Estimating Arctic Ocean Acoustic Travel Times Using an Earth System Model

被引:2
|
作者
Niklasson, S. M. [1 ,2 ]
Veneziani, M. [1 ]
Rowe, C. A. [1 ]
Worcester, P. F. [3 ]
Dzieciuch, M. A. [3 ]
Bilek, S. L. [2 ]
Price, S. F. [1 ]
Roberts, A. F. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
[2] New Mexico Inst Min & Technol, Socorro, NM 87801 USA
[3] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA USA
关键词
Arctic Ocean; ocean acoustics; Earth System Model; climate; BEAUFORT SEA; ICE; SOUND; HALOCLINE;
D O I
10.1029/2022GL102216
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The hydroacoustic environment of a rapidly warming Arctic Ocean will be impacted by interconnected changes in the physical environment and increased human activity. Previous acoustic calculations will need to be updated to reflect current and future conditions. Earth System Models are important tools for making projections of changes in a wide range of physical processes under future climates. We present a comparison of Arctic acoustic travel times based on output from the Department of Energy's Energy Exascale Earth System Model with measured travel times from the 2016-2017 Canada Basin Acoustic Propagation Experiment and with travel times predicted by empirical temperature and salinity observations. This comparison allows us to test the impact of changes in Arctic sound speed profiles on acoustic travel times and connects Arctic hydroacoustics with the changing Arctic environment as described by a climate model.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Reduction of Travel Times and Traffic Emissions Using Model Predictive Controla
    Zegeye, Solomon Kidane
    De Schutter, Bart
    Hellendoorn, Hans
    Breunesse, Ewald
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 5392 - +
  • [32] Arctic Clouds and Precipitation in the Community Earth System Model Version 2
    McIlhattan, Elin A.
    Kay, Jennifer E.
    L'Ecuyer, Tristan S.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (22)
  • [33] Prediction of the Arctic Sea Ice Characteristics for Summer Seasons Using the INM RAS Earth System Model
    Bragina, V. V.
    Tarasevich, M. A.
    Volodin, E. M.
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2024, 49 (08) : 681 - 690
  • [34] Analysis of Wave Distributions Using the WAVEWATCH-Ⅲ Model in the Arctic Ocean
    SHAO Weizeng
    YU Wupeng
    JIANG Xingwei
    SHI Jian
    WEI Yongliang
    JI Qiyan
    Journal of Ocean University of China, 2022, 21 (01) : 15 - 27
  • [35] Using genetic algorithms to calibrate a dimethylsulfide production model in the Arctic ocean
    Bo Qu
    Albert J. Gabric
    Chinese Journal of Oceanology and Limnology, 2010, 28 : 573 - 582
  • [36] Using genetic algorithms to calibrate a dimethylsulfide production model in the Arctic Ocean
    瞿波
    GABRIC J.Albert
    Journal of Oceanology and Limnology, 2010, (03) : 573 - 582
  • [37] Using genetic algorithms to calibrate a dimethylsulfide production model in the Arctic Ocean
    瞿波
    GABRIC JAlbert
    ChineseJournalofOceanologyandLimnology, 2010, 28 (03) : 573 - 582
  • [38] Using genetic algorithms to calibrate a dimethylsulfide production model in the Arctic Ocean
    Qu Bo
    Gabric, Albert J.
    CHINESE JOURNAL OF OCEANOLOGY AND LIMNOLOGY, 2010, 28 (03): : 573 - 582
  • [39] Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model
    Jungclaus, J. H.
    Fischer, N.
    Haak, H.
    Lohmann, K.
    Marotzke, J.
    Matei, D.
    Mikolajewicz, U.
    Notz, D.
    von Storch, J. S.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2013, 5 (02) : 422 - 446
  • [40] Artificial Neural Network Model for Estimating Ocean Heat Content in the Sea Ice-Covered Arctic Regions Using Satellite Data
    Kondeti, Vijay Prakash
    Shanmugam, Palanisamy
    IEEE ACCESS, 2022, 10 : 109544 - 109557