Time Averages and Periodic Attractors at High Rayleigh Number for Lorenz-like Models

被引:1
|
作者
Ovsyannikov, Ivan [1 ]
Rademacher, Jens D. M. D. [2 ]
Welter, Roland [2 ]
Lu, Bing-ying [3 ]
机构
[1] Constructor Univ, Sch Sci, Campus Ring 1, D-28759 Bremen, DE, Germany
[2] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, DE, Germany
[3] Int Sch Adv Studies SISSA, Bonomea 265, I-34136 Trieste, IT, Italy
基金
俄罗斯科学基金会;
关键词
Bifurcation theory; Melnikov method; Hamiltonian limiting system; HOMOCLINIC ORBITS; HIGH-R; BIFURCATIONS; TRANSPORT; BOUNDS;
D O I
10.1007/s00332-023-09933-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Revisiting the Lorenz '63 equations in the regime of large of Rayleigh number, we study the occurrence of periodic solutions and quantify corresponding time averages of selected quantities. Perturbing from the integrable limit of infinite., we provide a full proof of existence and stability of symmetric periodic orbits, which confirms previous partial results. Based on this, we expand time averages in terms of elliptic integrals with focus on the much studied average `transport,' which is the mode reduced excess heat transport of the convection problem that gave rise to the Lorenz equations. We find a hysteresis loop between the periodic attractors and the nonzero equilibria of the Lorenz equations. These have been proven to maximize transport, and we show that the transport takes arbitrarily small values in the family of periodic attractors. In particular, when the nonzero equilibria are unstable, we quantify the difference between maximal and typically realized values of transport. We illustrate these results by numerical simulations and show how they transfer to various extended Lorenz models.
引用
收藏
页数:39
相关论文
共 50 条