Incorporating covariate into mean and covariance function estimation of functional data under a general weighing scheme
被引:0
|
作者:
Yan, Xingyu
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
Yan, Xingyu
[1
]
Wang, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Sch Math & Stat, Wuhu 241000, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
Wang, Hao
[2
]
Sun, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
Sun, Hong
[3
]
Zhao, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
Jiangsu Normal Univ, Jiangsu Prov Key Lab Educ Big Data Sci & Engn, RIMS, Xuzhou 221116, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
Zhao, Peng
[1
,4
]
机构:
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241000, Peoples R China
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[4] Jiangsu Normal Univ, Jiangsu Prov Key Lab Educ Big Data Sci & Engn, RIMS, Xuzhou 221116, Peoples R China
Functional data;
Local linear smoothing;
Uniform convergence;
Weighing schemes;
NONPARAMETRIC REGRESSION;
SPARSE;
MODELS;
D O I:
10.1017/S0269964822000511
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
This paper develops the estimation method of mean and covariance functions of functional data with additional covariate information. With the strength of both local linear smoothing modeling and general weighing scheme, we are able to explicitly characterize the mean and covariance functions with incorporating covariate for irregularly spaced and sparsely observed longitudinal data, as typically encountered in engineering technology or biomedical studies, as well as for functional data which are densely measured. Theoretically, we establish the uniform convergence rates of the estimators in the general weighing scheme. Monte Carlo simulation is conducted to investigate the finite-sample performance of the proposed approach. Two applications including the children growth data and white matter tract dataset obtained from Alzheimer's Disease Neuroimaging Initiative study are also provided.
机构:
Southwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Peoples R China
Southwestern Univ Finance & Econ, Sch Stat, Chengdu, Peoples R ChinaSouthwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Peoples R China
Zhang, Chenlin
Lin, Huazhen
论文数: 0引用数: 0
h-index: 0
机构:
Southwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Peoples R China
Southwestern Univ Finance & Econ, Sch Stat, Chengdu, Peoples R ChinaSouthwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Peoples R China
Lin, Huazhen
Liu, Li
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R ChinaSouthwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Peoples R China
Liu, Li
Liu, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Duke NUS Med Sch, Ctr Quantitat Med, Program Hlth Serv & Syst Res, Singapore, SingaporeSouthwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Peoples R China
机构:
Renmin Univ China, Inst Stat & Big Data, 59 Zhongguancun St, Beijing 100872, Peoples R ChinaRenmin Univ China, Inst Stat & Big Data, 59 Zhongguancun St, Beijing 100872, Peoples R China
Ding, Fei
He, Shiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Inst Stat & Big Data, 59 Zhongguancun St, Beijing 100872, Peoples R China
Renmin Univ China, Ctr Appl Stat, 59 Zhongguancun St, Beijing 100872, Peoples R ChinaRenmin Univ China, Inst Stat & Big Data, 59 Zhongguancun St, Beijing 100872, Peoples R China
He, Shiyuan
Jones, David E.
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Stat, College Stn, TX 77843 USARenmin Univ China, Inst Stat & Big Data, 59 Zhongguancun St, Beijing 100872, Peoples R China
Jones, David E.
Huang, Jianhua Z.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Sch Data Sci, Shenzhen, Peoples R ChinaRenmin Univ China, Inst Stat & Big Data, 59 Zhongguancun St, Beijing 100872, Peoples R China