On estimation of covariance function for functional data with detection limits

被引:0
|
作者
Liu, Haiyan [1 ]
Houwing-Duistermaat, Jeanine [1 ,2 ]
机构
[1] Univ Leeds, Dept Stat, Leeds, England
[2] Radboud Univ Nijmegen, Dept Math, Nijmegen, Netherlands
关键词
Functional data analysis; informative missing; detection limit; local constant covariance estimation; SPARSE;
D O I
10.1080/10485252.2023.2258999
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many studies on disease progression, biomarkers are restricted by detection limits, hence informatively missing. Current approaches ignore the problem by just filling in the value of the detection limit for the missing observations for the estimation of the mean and covariance function, which yield inaccurate estimation. Inspired by our recent work [Liu and Houwing-Duistermaat (2022), 'Fast Estimators for the Mean Function for Functional Data with Detection Limits', Stat, e467.] in which novel estimators for mean function for data subject to detection limit are proposed, in this paper, we will propose a novel estimator for the covariance function for sparse and dense data subject to a detection limit. We will derive the asymptotic properties of the estimator. We will compare our method to the standard method, which ignores the detection limit, via simulations. We will illustrate the new approach by analysing biomarker data subject to a detection limit. In contrast to the standard method, our method appeared to provide more accurate estimates of the covariance. Moreover its computation time is small.
引用
收藏
页码:730 / 748
页数:19
相关论文
共 50 条
  • [1] Low-Rank Covariance Function Estimation for Multidimensional Functional Data
    Wang, Jiayi
    Wong, Raymond K. W.
    Zhang, Xiaoke
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (538) : 809 - 822
  • [2] Nonparametric operator-regularized covariance function estimation for functional data
    Wong, Raymond K. W.
    Zhang, Xiaoke
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 131 : 131 - 144
  • [3] ESTIMATION OF COVARIANCE-MATRIX FROM GEOCHEMICAL DATA WITH OBSERVATIONS BELOW DETECTION LIMITS
    CHUNG, CJF
    [J]. MATHEMATICAL GEOLOGY, 1993, 25 (07): : 851 - 865
  • [4] Estimating the covariance function with functional data
    Lee, SY
    Zhang, WY
    Song, XY
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2002, 55 : 247 - 261
  • [5] Fast estimators for the mean function for functional data with detection limits
    Liu, Haiyan
    Houwing-Duistermaat, Jeanine
    [J]. STAT, 2022, 11 (01):
  • [6] Mean and covariance estimation of functional data streams
    Quan, Mingxue
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [7] Fast covariance estimation for sparse functional data
    Xiao, Luo
    Li, Cai
    Checkley, William
    Crainiceanu, Ciprian
    [J]. STATISTICS AND COMPUTING, 2018, 28 (03) : 511 - 522
  • [8] Fast covariance estimation for sparse functional data
    Luo Xiao
    Cai Li
    William Checkley
    Ciprian Crainiceanu
    [J]. Statistics and Computing, 2018, 28 : 511 - 522
  • [9] A NONPARAMETRIC ESTIMATOR FOR THE COVARIANCE FUNCTION OF FUNCTIONAL DATA
    Sancetta, Alessio
    [J]. ECONOMETRIC THEORY, 2015, 31 (06) : 1359 - 1381
  • [10] Fast covariance estimation for multivariate sparse functional data
    Li, Cai
    Xiao, Luo
    Luo, Sheng
    [J]. STAT, 2020, 9 (01):