Duality for α-Mobius invariant Besov spaces

被引:0
|
作者
Bao, Guanlong [1 ]
Lou, Zengjian [1 ]
Zhou, Xiaojing [1 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobius group; Mobius invariant spaces; Besov spaces; Bloch type space;
D O I
10.1007/s43037-023-00285-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For 1 <= p <= infinity and alpha > 0, Besov spaces B-alpha(p) play a key role in the theory of alpha-Mobius invariant function spaces. In some sense, B-alpha(1) is the minimal alpha-Mobius invariant function space, B-alpha(2) is the unique alpha-Mobius invariant Hilbert space, and B-alpha(infinity) is the maximal alpha-Mobius invariant function space. In this paper, under the alpha-Mobius invariant pairing and by the space B-alpha(infinity), we identify the predual and dual spaces of B-alpha(1). In particular, the corresponding identifications are isometric isomorphisms. The duality theorem via the alpha-Mobius invariant pairing for B-alpha(p) with p > 1 is also given.
引用
收藏
页数:18
相关论文
共 50 条