Target space entanglement entropy

被引:7
|
作者
Mazenc, Edward A. A. [1 ,2 ,3 ]
Ranard, Daniel [1 ,4 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, 382 Via Pueblo, Stanford, CA 94305 USA
[2] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA
[3] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
[4] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
关键词
AdS-CFT Correspondence; M(atrix) Theories; Sigma Models;
D O I
10.1007/JHEP03(2023)111
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We define a notion of target space entanglement entropy. Rather than partitioning the base space on which the theory is defined, we consider partitions of the target space. This is the physical case of interest for first-quantized theories, such as worldsheet string theory. We associate to each subregion of the target space a suitably chosen subalgebra of observables A. The entanglement entropy is calculated as the entropy of the density matrix restricted to A. As an example, we illustrate our framework by computing spatial entanglement in first-quantized many-body quantum mechanics. The algebra A is chosen to reproduce the entanglement entropy obtained by embedding the state in the fixed particle sub-sector of the second-quantized Hilbert space. We then generalize our construction to the quantum field-theoretical setting.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Entanglement entropy on fractals
    Astaneh, Amin Faraji
    PHYSICAL REVIEW D, 2016, 93 (06)
  • [42] Induced entanglement entropy of harmonic oscillators in non-commutative phase space
    Lin, Bingsheng
    Xu, Jian
    Heng, Taihua
    MODERN PHYSICS LETTERS A, 2019, 34 (33)
  • [43] SVD entanglement entropy
    Parzygnat, Arthur J.
    Takayanagi, Tadashi
    Taki, Yusuke
    Wei, Zixia
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (12)
  • [44] Timelike entanglement entropy
    Doi, Kazuki
    Harper, Jonathan
    Mollabashi, Ali
    Takayanagi, Tadashi
    Taki, Yusuke
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (05)
  • [45] Entropy of temporal entanglement
    Castellani, Leonardo
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2023, 21 (01)
  • [46] History entanglement entropy
    Castellani, Leonardo
    PHYSICA SCRIPTA, 2021, 96 (05)
  • [47] Hyperspherical entanglement entropy
    Dowker, J. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (44)
  • [48] SVD entanglement entropy
    Arthur J. Parzygnat
    Tadashi Takayanagi
    Yusuke Taki
    Zixia Wei
    Journal of High Energy Physics, 2023
  • [49] Topological entanglement entropy
    Kitaev, A
    Preskill, J
    PHYSICAL REVIEW LETTERS, 2006, 96 (11)
  • [50] Generalized entanglement entropy
    Taylor, Marika
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07):