Families and unfoldings of singular holomorphic Lie algebroids

被引:0
|
作者
Correa, Mauricio [1 ,2 ]
Molinuevo, Ariel [3 ]
Quallbrunn, Federico [4 ]
机构
[1] ICEx UFMG, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
[3] Univ Fed Rio de Janeiro, Inst Matemat, Ctr Tecnol, Av Athos da Silveira Ramos 149,Bloco C,Cidade Univ, BR-21941909 Rio de Janeiro, RJ, Brazil
[4] Univ CAECE, Dept Matemat, Av Mayo 866,CP C1084AAQ, Buenos Aires, Argentina
关键词
FOLIATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate families of singular holomorphic Lie algebroids on complex analytic spaces. We introduce and study a special type of deformation called unfoldings of Lie algebroids, which generalizes the theory of singular holomorphic foliations developed by T. Suwa. We show that a one-to-one correspondence between transversal unfoldings and holomorphic flat connections on a natural Lie algebroid on the bases exists.
引用
收藏
页码:989 / 1006
页数:18
相关论文
共 50 条
  • [31] Lie algebroids and Mechanics
    Martinez, Eduardo
    GEOMETRY AND PHYSICS, 2009, 1130 : 3 - 33
  • [32] Abelianization of Lie algebroids and Lie groupoids ☆
    Xiao, Shuyu
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 207
  • [33] Prolongations of Lie groupoids and Lie algebroids
    Saunders, DJ
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (03): : 637 - 655
  • [34] BANACH LIE ALGEBROIDS
    Anastasiei, Mihai
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2011, 57 (02): : 409 - 416
  • [35] GENERAL THEORY OF LIE GROUPOIDS AND LIE ALGEBROIDS
    Voronov, Theodore
    JOURNAL OF GEOMETRIC MECHANICS, 2021, 13 (03): : 277 - 283
  • [36] Matched pairs of Lie algebroids
    Mokri, T
    GLASGOW MATHEMATICAL JOURNAL, 1997, 39 : 167 - 181
  • [37] Leaves of stacky Lie algebroids
    Alvarez, Daniel
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (02) : 217 - 226
  • [38] Obstructions for Symplectic Lie Algebroids
    Klaasse, Ralph L.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [39] Higher Lie algebra actions on Lie algebroids
    Zambon, Marco
    Zhu, Chenchang
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 64 : 155 - 173
  • [40] Linearization Problems for Lie Algebroids and Lie Groupoids
    Alan Weinstein
    Letters in Mathematical Physics, 2000, 52 : 93 - 102