500 V breakdown voltage in β-Ga2O3 laterally diffused metal-oxide-semiconductor field-effect transistor with 108 MW/cm2 power figure of merit

被引:3
|
作者
Rik, Nesa Abedi [1 ]
Orouji, Ali. A. [1 ]
Madadi, Dariush [1 ]
机构
[1] Semnan Univ, Elect Engn Dept, Semnan, Iran
关键词
Field Effect Transistor; Figure of Merit; MOSFET; Power Semiconductor Devices; CHANNEL; LDMOS; TECHNOLOGY;
D O I
10.1049/cds2.12158
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors' present a silicon-on-insulator (SOI) laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET) with beta-Ga2O3 , which is a large bandgap semiconductor (beta-LDMOSFET), for increasing breakdown voltage (V-BR) and power figure of merit. The fundamental purpose is to use a beta-Ga2O3 semiconductor instead of silicon material due to its large breakdown field. The characteristics of beta-LDMOSFET are analysed to those of standard LDMOSFET, such as V-BR, ON-resistance (R-ON), power figure of merit (PFOM), and radio frequency (RF) performances. The effects of RF, such as gate-drain capacitance (C-GD), gate-source capacitance (C-GS), transit frequency (f(T)), and maximum frequency of oscillation (f(MAX)) have been investigated. The beta-LDMOSFET structure outperforms performance in the V-BR by increasing it to 500 versus 84.4 V in standard LDMOSFET design. The suggested beta-LDMOSFET has R-ON similar to 2.3 m Omega.cm(-2) and increased the PFOM (V-BR(2)/R-ON) to 108.6 MW/cm(2). All the simulations are done with TCAD and simulation models are calibrated with the experimental data.
引用
收藏
页码:199 / 204
页数:6
相关论文
共 50 条
  • [31] Lateral beta-Ga2O3 MOSFETs With High Power Figure of Merit of 277 MW/cm(2)
    Lv, Yuanjie
    Liu, Hongyu
    Zhou, Xingye
    Wang, Yuangang
    Song, Xubo
    Cai, Yuncong
    Yan, Qinglong
    Wang, Chenlu
    Liang, Shixiong
    Zhang, Jincheng
    Feng, Zhihong
    Zhou, Hong
    Cai, Shujun
    Hao, Yue
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (04) : 537 - 540
  • [32] Field-plate engineering for high breakdown voltage β-Ga2O3 nanolayer field-effect transistors
    Bae, Jinho
    Kim, Hyoung Woo
    Kang, In Ho
    Kim, Jihyun
    RSC ADVANCES, 2019, 9 (17): : 9678 - 9683
  • [33] Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires
    Hsieh, Chin-Hua
    Chang, Mu-Tung
    Chien, Yu-Jen
    Chou, Li-Jen
    Chen, Lih-Juann
    Chen, Chii-Dong
    NANO LETTERS, 2008, 8 (10) : 3288 - 3292
  • [34] A field-plated Ga2O3 MOSFET with near 2-kV breakdown voltage and 520 mΩ . cm2 on-resistance
    Zeng, Ke
    Vaidya, Abhishek
    Singisetti, Uttam
    APPLIED PHYSICS EXPRESS, 2019, 12 (08)
  • [35] Improved transport properties of Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor
    Kordos, P.
    Gregusova, D.
    Stoklas, R.
    Cico, K.
    Novak, J.
    APPLIED PHYSICS LETTERS, 2007, 90 (12)
  • [36] Sulfur passivation of Ga2O3(Gd2O3)/GaAs metal-oxide-semiconductor structures
    Eftekhari, G
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (05): : 2569 - 2572
  • [37] Self-aligned inversion-channel In0.2Ga0.8As metal-oxide-semiconductor field-effect transistor with molecular beam epitaxy Al2O3/Ga2O3(Gd2O3) as the gate dielectric
    Chang, W. H.
    Chiang, T. H.
    Wu, Y. D.
    Hong, M.
    Lin, C. A.
    Kwo, J.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (03):
  • [38] Effect of Al2O3 Passivation on Electrical Properties of β-Ga2O3 Field-Effect Transistor
    Ma, Jiyeon
    Lee, Oukjae
    Yoo, Geonwook
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2019, 7 (01): : 512 - 516
  • [39] Ga2O3(Gd2O3)/Si3N4 dual-layer gate dielectric for InGaAs enhancement mode metal-oxide-semiconductor field-effect transistor with channel inversion
    Zheng, J. F.
    Tsai, W.
    Lin, T. D.
    Lee, Y. J.
    Chen, C. P.
    Hong, M.
    Kwo, J.
    Cui, S.
    Ma, T. P.
    APPLIED PHYSICS LETTERS, 2007, 91 (22)
  • [40] High Quality SiO2/Al2O3 Gate Stack for GaN Metal-Oxide-Semiconductor Field-Effect Transistor
    Kambayashi, Hiroshi
    Nomura, Takehiko
    Ueda, Hirokazu
    Harada, Katsushige
    Morozumi, Yuichiro
    Hasebe, Kazuhide
    Teramoto, Akinobu
    Sugawa, Shigetoshi
    Ohmi, Tadahiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (04)