Ideality Factor Mapping of Back-Contact Perovskite Solar Cells

被引:8
|
作者
Rietwyk, Kevin J. J. [1 ]
Lin, Xiongfeng [1 ]
Tan, Boer R. [1 ]
Warnakula, Tharindu [2 ]
Holzhey, Philippe [1 ,3 ]
Zhao, Boya [1 ]
Deng, Siqi [1 ]
Surmiak, Maciej A. A. [1 ]
Jasieniak, Jacek [2 ]
Bach, Udo [1 ]
机构
[1] Monash Univ, Australian Res Council Ctr Excellence Exciton Sci, Dept Chem & Biol Engn, Clayton, Vic 3800, Australia
[2] Monash Univ, Australian Res Council Ctr Excellence Exciton Sci, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[3] Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
基金
澳大利亚研究理事会;
关键词
2D drift-diffusion; back-contact; ideality factor; micro-photoluminescence; perovskite solar cells; OPEN-CIRCUIT VOLTAGE; CHARGE EXTRACTION; FILL FACTOR; HYSTERESIS; RECOMBINATION; OPTIMIZATION; ELECTRODES; DESIGN; ORIGIN; DECAY;
D O I
10.1002/aenm.202200796
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The efficiency of back-contact perovskite solar cells has steadily increased over the past few years and now exceeds 11%, with interest in these devices shifting from proof-of-concept to viable technology. In order to make further improvements in the efficiency of these devices it is necessary to understand the cause of the low fill factor, low open-circuit voltage (V-OC), and severe hysteresis. Here a time-dependent Suns-V-oc and Suns-photoluminescence (PL) analysis are performed to monitor the transient ideality factor spatially. Two sets of quasi-interdigitated back-contact perovskite solar cells are studied; cells with and without a mesoporous TiO2 layer. Maps of the PL intensity and ideality factor resemble the periodic structure of the back-contact electrodes and the transient behavior exhibit distinct features such as a temporary variation in the periodicity of the modulation, spatial phase shifting, and phase offsets. It is shown that the presence of the mesoporous layer greatly reduces recombination, increasing the V-OC by 0.12 V. Coupled 2D time-dependent drift-diffusion simulations allow the experimental results to be modeled, and replicate the key features observed experimentally. They reveal that non-uniform ion distribution along the transport layer interfaces can drastically alter the PL intensity and ideality factor throughout the device.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Transparent Quasi-Interdigitated Electrodes for Semitransparent Perovskite Back-Contact Solar Cells
    DeLuca, Giovanni
    Jumabekov, Askhat N.
    Hu, Yinghong
    Simonov, Alexandr N.
    Lu, Jianfeng
    Tan, Boer
    Adbyaksa, Gede W. P.
    Garnett, Erik C.
    Reichmanis, Elsa
    Chesman, Anthony S. R.
    Bach, Udo
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (09): : 4473 - 4478
  • [22] Back-contact perovskite solar cells with honeycomb-like charge collecting electrodes
    Hou, Qicheng
    Bacal, Dorota
    Jumabekov, Askhat N.
    Li, Wei
    Wang, Ziyu
    Lin, Xiongfeng
    Ng, Soon Hock
    Tan, Boer
    Bao, Qiaoliang
    Chesman, Anthony S. R.
    Cheng, Yi-Bing
    Bach, Udo
    NANO ENERGY, 2018, 50 : 710 - 716
  • [23] Quasi-Interdigitated Back-Contact Perovskite Solar Cells with Enhanced Light Confinement
    Wang, Ruixiao
    Zhang, Xinpeng
    Zhang, Zemin
    Wang, Siyi
    Zhong, Zijian
    Ma, Linchuan
    Li, Yuelong
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (20): : 9186 - 9193
  • [24] Developing an Advanced Module for Back-Contact Solar Cells
    Govaerts, Jonathan
    Robbelein, Jo
    Gonzalez, Mario
    Gordon, Ivan
    Baert, Kris
    De Wolf, Ingrid
    Bossuyt, Frederick
    Van Put, Steven
    Vanfleteren, Jan
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2011, 1 (09): : 1319 - 1327
  • [25] Dye-Sensitized Back-Contact Solar Cells
    Fu, Dongchuan
    Zhang, Xiao Li
    Barber, Richard L.
    Bach, Udo
    ADVANCED MATERIALS, 2010, 22 (38) : 4270 - +
  • [26] Quantifying the Optical Losses in Back-contact Solar Cells
    McIntosh, K. R.
    Kho, T. C.
    Fong, K. C.
    Baker-Finch, S. C.
    Wan, Y.
    Zin, N.
    Franklin, E. T.
    Wang, D.
    Abbott, M. D.
    Grant, N. E.
    Wang, E.
    Stocks, M.
    Blakers, A. W.
    2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 111 - 119
  • [27] A woven fabric for interconnecting back-contact solar cells
    Borgers, Tom
    Govaerts, Jonathan
    Voroshazi, Eszter
    Jambaldinni, Shruti
    O'Sullivan, Barry
    Singh, Sukhvinder
    Debucquoy, Maarten
    Szlufcik, Jozef
    Poortmans, Jef
    PROGRESS IN PHOTOVOLTAICS, 2017, 25 (07): : 569 - 582
  • [28] Laser-Doped Back-Contact Solar Cells
    Dahlinger, Morris
    Bazer-Bachi, Barbara
    Roeder, Tobias C.
    Koehler, Juergen R.
    Zapf-Gottwick, Renate
    Werner, Juergen H.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2015, 5 (03): : 812 - 818
  • [29] BACK-CONTACT SOLAR CELLS IN THIN CRYSTALLINE SILICON
    Fossum, J. G.
    Sarkar, D.
    Mathew, L.
    Ra, R.
    Jawarani, D.
    Law, M. E.
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 3131 - 3136
  • [30] Back-contact perovskite solar cell fabrication via microsphere lithography
    Deng, Siqi
    Tan, Boer
    Chesman, Anthony S. R.
    Lu, Jianfeng
    McMeekin, David P.
    Ou, Qingdong
    Scully, Andrew D.
    Raga, Sonia R.
    Rietwyk, Kevin J.
    Weissbach, Anton
    Zhao, Boya
    Voelcker, Nicolas H.
    Cheng, Yi-Bing
    Lin, Xiongfeng
    Bach, Udo
    NANO ENERGY, 2022, 102