Adsorption behavior and mechanism of action of magnetic MIL-100(Fe) on MB

被引:4
|
作者
Fu, Qiaofang [1 ,2 ]
Wu, Ying [1 ,3 ]
机构
[1] Xinjiang Prod & Construction Corps, Key Lab Protect & Utilizat Biol Resources Tarim Ba, Alar 843300, Xinjiang, Peoples R China
[2] Tarim Univ, Coll Life Sci & Technol, Alar 843300, Xinjiang, Peoples R China
[3] Tarim Univ, Coll Chem & Chem Engn, Alar 843300, Xinjiang, Peoples R China
关键词
MIL-100 (Fe); Fe3O4; Methylene blue; Adsorption; METHYLENE-BLUE; REMOVAL; NANOPARTICLES;
D O I
10.1007/s10661-023-11282-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dye wastewater seriously affects human living environment and human health. This experiment develops green and efficient recyclable Fe3O4@MIL-100(Fe) under room temperature conditions. The microscopic morphology, chemical structure and magnetic properties of Fe3O4@MIL-100 (Fe) were characterized by SEM, FT-IR, XRD and VSM, and the adsorption capacity and adsorption mechanism of the adsorbent on methylene blue (MB) were investigated. The results showed that MIL-100(Fe) was successfully grown on Fe3O4, and the composite had excellent crystalline shape and morphology and good magnetic response. The specific surface area of Fe3O4@MIL-100(Fe) is 1203.18 m(2) g(-1) by N-2 adsorption isothermal curve, and MIL-100(Fe) still has high specific surface area after compounding with magnetic particles. The adsorption process follows the quasi-level kinetic equation and the Langmuir isothermal model, according to which the adsorption capacity of Fe3O4@MIL-100 (Fe) on MB can be up to 487.8 mg g(-1) for a single molecular layer. The thermodynamic experiments show that the adsorption of MB by the adsorbent is a spontaneous heat absorption process. In addition, the adsorption amount of Fe3O4@MIL-100 (Fe) on MB was still maintained at 88.4% after 6 cycles with good reusability, and its crystalline shape did not change significantly, indicating that Fe3O4@MIL-100 (Fe) can be used as an efficient and regenerable adsorbent for the treatment of printing and dyeing wastewater.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Investigation of the Water Adsorption Properties and Structural Stability of MIL-100(Fe) with Different Anions
    Chen, Yen-Ru
    Liou, Kai-Hsin
    Kang, Dun-Yen
    Chen, Jiun-Jen
    Lin, Li-Chiang
    LANGMUIR, 2018, 34 (14) : 4180 - 4187
  • [12] Application of MIL-100(Fe) in drug delivery and biomedicine
    Quijia, Christian Rafael
    Lima, Camila
    Silva, Caroline
    Alves, Renata Carolina
    Frem, Regina
    Chorilli, Marlus
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2021, 61
  • [13] In-situ growth of iron oxides with MIL-100(Fe) enhances its adsorption for selenite
    Wang, Rui
    Xu, Haijuan
    Liu, Xin
    Fang, Dun
    Wei, Shiyong
    Yu, Ai-Nong
    SURFACES AND INTERFACES, 2022, 34
  • [14] Bionanocomposite MIL-100(Fe)/Cellulose as a high-performance adsorbent for the adsorption of methylene blue
    Abbasi, Shahla
    Nezafat, Zahra
    Javanshir, Shahrzad
    Aghabarari, Behzad
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [15] Pressure swing adsorption process for the separation of nitrogen and propylene with a MOF adsorbent MIL-100(Fe)
    Ribeiro, Ana M.
    Campo, Marta C.
    Narin, Guler
    Santos, Joao C.
    Ferreira, Alexandre
    Chang, Jong-San
    Hwang, Young Kyu
    Seo, You-Kyong
    Lee, U-Hwang
    Loureiro, Jose M.
    Rodrigues, Alirio E.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2013, 110 : 101 - 111
  • [16] Efficient and comparative adsorption of trinitrotoluene on MOF MIL-100 (Fe)-derived porous carbon/Fe composite adsorbents with rod-like morphology: Behavior, mechanism, and new perspectives
    Kokuloku Jr, Lowell Toku
    Miensah, Elvis Djam
    Gu, Aotian
    Chen, Kaiwei
    Wang, Peng
    Gong, Chunhui
    Jiao, Yan
    Chen, Kai
    Yang, Yi
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 663
  • [17] Efficient one-pot synthesis of magnetic MIL-100(Fe) using nitric acid without additional Fe ion addition and adsorption behavior of charged organic compounds
    Lee, Hyeonho
    Kim, David Inhyuk
    Kim, Youjin
    Jang, Am
    CHEMOSPHERE, 2023, 314
  • [18] In Situ Synthesis of a Mesoporous MIL-100(Fe) Bacteria Exoskeleton
    Permyakova, Anastasia
    Kakar, Alshaba
    Bachir, Jonathan
    Gkaniatsou, Effrosyni
    Haye, Bernard
    Menguy, Nicolas
    Nouar, Farid
    Serre, Christian
    Steunou, Nathalie
    Coradin, Thibaud
    Fernandes, Francisco M.
    Sicard, Clemence
    ACS MATERIALS LETTERS, 2023, 5 (01): : 79 - 84
  • [19] Synthesis of MIL-100(Fe) at Low Temperature and Atmospheric Pressure
    Shi, Jing
    Hei, Shengtao
    Liu, Huanhuan
    Fu, Yanghe
    Zhang, Fumin
    Zhong, Yijun
    Zhu, Weidong
    JOURNAL OF CHEMISTRY, 2013, 2013
  • [20] Ni-modified MIL-100(Fe) catalysts for CO-SCR of NO and reaction mechanism
    Ning, Shuying
    Su, Yaxin
    Yang, Honghai
    Zhao, Bingtao
    FUEL, 2024, 359