Alginate/carboxymethylcellulose-based hydrogels as pH-sensitive drug delivery systems: facile production with enhanced degradation, thermal and mechanical properties

被引:3
|
作者
Akalin, Gulen Oytun [1 ]
机构
[1] Aksaray Univ, Vocat Sch Hlth Serv, Dept Med Serv & Tech, Med Lab Program, TR-68100 Aksaray, Turkiye
关键词
Sodium carboxymethylcellulose; Alginate; pH-sensitive; Hydrogel; Drug carrier; Release; CARBOXYMETHYL CELLULOSE BEADS; CHITOSAN HYDROGELS; CROSS-LINKING; RELEASE; NANOCOMPOSITE; OPTIMIZATION; CALCIUM; MATRIX;
D O I
10.1007/s13726-023-01182-9
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
pH-Sensitive alginate (ALG)/sodium carboxymethylcellulose (CMC) hydrogels were synthesized using a novel technique to utilize as a drug carrier in this study. The characterization of hydrogels was performed using FTIR (Fourier-transformed infrared spectroscopy), SEM(scanning electron microscopy), TGA (thermogravimetric analysis), DSC (differential scanning calorimetry), gel content and mechanical tests. The last technique is new and it is compared with the most well-known ionic crosslinking method to investigate the effectiveness of the technique. Gel content, degradation and thermal and mechanical stabilities were found to be higher. Swelling and degradation behaviors of hydrogels were studied in simulating gastric juice of pH 1.2 or simulating intestinal fluid of pH 6.8 and simulating colon fluid of pH 7.4 at 37 ?. The maximum swelling degree was observed at pH 7.4, and the minimum swelling degree was obtained at pH 1.2. An Anti-arrhythmics drug, propranolol hydrochloride (PPN), was loaded onto the obtained hydrogels as a model drug. Encapsulation efficiency (%) and drug loading amount (g/g) of ALG/CMC hydrogels synthesized by a new technique were found to be 61-68.4% and 0.152-0.171 g/g, respectively. The values of initial burst release at 15 min (%), drug released at 7 h (%) and equilibrium drug release were researched. Different kinetic model parameters (zero-order, first-order, Higuchi, and Korsmeyer-Peppas models) were calculated to investigate the drug release mechanism. The engineered hydrogels displayed controlled swelling capacity, cavitary surfaces, more porosity, high degradation resistance, gel content, thermal and mechanical properties and controlled drug release. These findings suggest that hydrogels synthesized by this new technique may be useful as a drug delivery system.
引用
收藏
页码:1013 / 1032
页数:20
相关论文
共 50 条
  • [11] Synthesis and evaluation of biocompatible pH-sensitive hydrogels as colon-specific drug delivery systems
    Mahkam, Mehrdad
    Mohammadi, Reihaneh
    Siadat, Seyed Omid Ranaei
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2006, 53 (03) : 727 - 733
  • [12] pH-sensitive hydrogel based on carboxymethyl chitosan/sodium alginate and its application for drug delivery
    Xie, Cong-Xia
    Tian, Ting-Cui
    Yu, Shi-Tao
    Li, Lu
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (01)
  • [13] Preparation and characterization of pH-sensitive carboxymethyl cellulose-based hydrogels for controlled drug delivery
    Pourkhatoun, Mina
    Kalantari, Maryam
    Kamyabi, Ata
    Moradi, Ali
    POLYMER INTERNATIONAL, 2022, 71 (08) : 991 - 998
  • [14] Calcium silicate-reinforced pH-sensitive alginate-gellan gum composite hydrogels for prolonged drug delivery
    Panday, Anupama
    Yadav, Harsh
    Patel, Jwala
    Paliwal, Rishi
    Maiti, Sabyasachi
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (37)
  • [15] pH-Sensitive Nanocomposite Hydrogels Based on Carboxymethyl Chitosan/Poly(vinyl alcohol)/ZnO Nanoparticle with Drug Delivery Properties
    Gholamali, Iman
    Asnaashariisfahani, Manzarbanou
    Alipour, Eskandar
    POLYMER SCIENCE SERIES A, 2020, 62 (05) : 502 - 514
  • [16] pH-Sensitive Nanocomposite Hydrogels Based on Carboxymethyl Chitosan/Poly(vinyl alcohol)/ZnO Nanoparticle with Drug Delivery Properties
    Manzarbanou Iman Gholamali
    Eskandar Asnaashariisfahani
    Polymer Science, Series A, 2020, 62 : 502 - 514
  • [17] Salicylic acid-based pH-sensitive hydrogels as potential oral insulin delivery systems
    Demirdirek, Bahar
    Uhrich, Kathryn E.
    JOURNAL OF DRUG TARGETING, 2015, 23 (7-8) : 716 - 724
  • [18] pH-Sensitive Drug Delivery System Based on Chitin Nanowhiskers-Sodium Alginate Polyelectrolyte Complex
    Dubashynskaya, Natallia, V
    Petrova, Valentina A.
    Romanov, Dmitry P.
    Skorik, Yury A.
    MATERIALS, 2022, 15 (17)
  • [19] Preparation of pH-sensitive alginate-based hydrogel by microfluidic technology for intestinal targeting drug delivery
    Qiao, Shishuai
    Chen, Weinan
    Zheng, Xiaoguang
    Ma, Li
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 254
  • [20] Preparation of pH-sensitive alginate-based hydrogel by microfluidic technology for intestinal targeting drug delivery
    Qiao, Shishuai
    Chen, Weinan
    Zheng, Xiaoguang
    Ma, Li
    International Journal of Biological Macromolecules, 2024, 254