Prediction model for gestational diabetes mellitus using the XG Boost machine learning algorithm
被引:5
|
作者:
Hu, Xiaoqi
论文数: 0引用数: 0
h-index: 0
机构:
Yantian Dist Peoples Hosp, Dept Nursing, Shenzhen, Guangdong, Peoples R ChinaYantian Dist Peoples Hosp, Dept Nursing, Shenzhen, Guangdong, Peoples R China
Hu, Xiaoqi
[1
]
Hu, Xiaolin
论文数: 0引用数: 0
h-index: 0
机构:
Southern Med Univ, Sch Basic Med Sci, Guangzhou, Guangdong, Peoples R ChinaYantian Dist Peoples Hosp, Dept Nursing, Shenzhen, Guangdong, Peoples R China
Hu, Xiaolin
[2
]
Yu, Ya
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou First Peoples Hosp, Dept Nursing, Guangzhou, Guangdong, Peoples R ChinaYantian Dist Peoples Hosp, Dept Nursing, Shenzhen, Guangdong, Peoples R China
Yu, Ya
[3
]
Wang, Jia
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Hosp Southern Med Univ, Dept Nursing, Shenzhen, Guangdong, Peoples R ChinaYantian Dist Peoples Hosp, Dept Nursing, Shenzhen, Guangdong, Peoples R China
Wang, Jia
[4
]
机构:
[1] Yantian Dist Peoples Hosp, Dept Nursing, Shenzhen, Guangdong, Peoples R China
[2] Southern Med Univ, Sch Basic Med Sci, Guangzhou, Guangdong, Peoples R China
[3] Guangzhou First Peoples Hosp, Dept Nursing, Guangzhou, Guangdong, Peoples R China
[4] Shenzhen Hosp Southern Med Univ, Dept Nursing, Shenzhen, Guangdong, Peoples R China
ObjectiveTo develop the extreme gradient boosting (XG Boost) machine learning (ML) model for predicting gestational diabetes mellitus (GDM) compared with a model using the traditional logistic regression (LR) method. MethodsA case-control study was carried out among pregnant women, who were assigned to either the training set (these women were recruited from August 2019 to November 2019) or the testing set (these women were recruited in August 2020). We applied the XG Boost ML model approach to identify the best set of predictors out of a set of 33 variables. The performance of the prediction model was determined by using the area under the receiver operating characteristic (ROC) curve (AUC) to assess discrimination, and the Hosmer-Lemeshow (HL) test and calibration plots to assess calibration. Decision curve analysis (DCA) was introduced to evaluate the clinical use of each of the models. ResultsA total of 735 and 190 pregnant women were included in the training and testing sets, respectively. The XG Boost ML model, which included 20 predictors, resulted in an AUC of 0.946 and yielded a predictive accuracy of 0.875, whereas the model using a traditional LR included four predictors and presented an AUC of 0.752 and yielded a predictive accuracy of 0.786. The HL test and calibration plots show that the two models have good calibration. DCA indicated that treating only those women whom the XG Boost ML model predicts are at risk of GDM confers a net benefit compared with treating all women or treating none. ConclusionsThe established model using XG Boost ML showed better predictive ability than the traditional LR model in terms of discrimination. The calibration performance of both models was good.
机构:
Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, TurkiyeKaradeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye
Kurt, Burcin
Gurlek, Beril
论文数: 0引用数: 0
h-index: 0
机构:
Recep Tayyip Erdogan Univ, Fac Med, Dept Gynecol & Obstet, Rize, TurkiyeKaradeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye
Gurlek, Beril
论文数: 引用数:
h-index:
机构:
Keskin, Seda
Ozdemir, Sinem
论文数: 0引用数: 0
h-index: 0
机构:
Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, TurkiyeKaradeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye
Ozdemir, Sinem
Karadeniz, Ozlem
论文数: 0引用数: 0
h-index: 0
机构:
Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, TurkiyeKaradeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye
Karadeniz, Ozlem
Kirkbir, Ilknur Bucan
论文数: 0引用数: 0
h-index: 0
机构:
Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, TurkiyeKaradeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye
Kirkbir, Ilknur Bucan
Kurt, Tugba
论文数: 0引用数: 0
h-index: 0
机构:
Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, TurkiyeKaradeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye
Kurt, Tugba
Unsal, Serbülent
论文数: 0引用数: 0
h-index: 0
机构:
Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, TurkiyeKaradeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye
Unsal, Serbülent
Kart, Cavit
论文数: 0引用数: 0
h-index: 0
机构:
Karadeniz Tech Univ, Fac Med, Dept Gynecol & Obstet, Trabzon, TurkiyeKaradeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye
Kart, Cavit
Baki, Neslihan
论文数: 0引用数: 0
h-index: 0
机构:
Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, TurkiyeKaradeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye
Baki, Neslihan
Turhan, Kemal
论文数: 0引用数: 0
h-index: 0
机构:
Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, TurkiyeKaradeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye
机构:
Southern Univ Sci & Technol Hosp, Dept Pharm, Shenzhen 518055, Guangdong, Peoples R ChinaCent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R China
Zhou, Fang
Ran, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ Forestry & Technol, Sch Food Sci & Engn, Changsha 410004, Peoples R China
SINOCARE Inc, Changsha 410004, Peoples R ChinaCent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R China
Ran, Xiao
Song, Fangliang
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ Forestry & Technol, Sch Food Sci & Engn, Changsha 410004, Peoples R ChinaCent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R China
Song, Fangliang
Wu, Qinglan
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol Hosp, Dept Pharm, Shenzhen 518055, Guangdong, Peoples R ChinaCent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R China
Wu, Qinglan
Jia, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol Hosp, Dept Pharm, Shenzhen 518055, Guangdong, Peoples R ChinaCent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R China
Jia, Yuan
Liang, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ Forestry & Technol, Sch Food Sci & Engn, Changsha 410004, Peoples R ChinaCent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R China
Liang, Ying
Chen, Suichen
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol Hosp, Dept Pharm, Shenzhen 518055, Guangdong, Peoples R ChinaCent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R China
Chen, Suichen
Zhang, Guojun
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol Hosp, Dept Pharm, Shenzhen 518055, Guangdong, Peoples R ChinaCent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R China
Zhang, Guojun
Dong, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R ChinaCent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R China
Dong, Jie
Wang, Yukun
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol Hosp, Dept Pharm, Shenzhen 518055, Guangdong, Peoples R China
Southern Univ Sci & Technol, Sch Med, Dept Pharmacol, Shenzhen 518055, Guangdong, Peoples R ChinaCent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410083, Peoples R China