Causal Spillover Effects Using Instrumental Variables

被引:7
|
作者
Vazquez-Bare, Gonzalo [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Econ, Santa Barbara, CA 93106 USA
关键词
Causal inference; Instrumental variables; Spillover effects; Treatment effects; IDENTIFICATION; INFERENCE; ASSIGNMENT;
D O I
10.1080/01621459.2021.2021920
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
I set up a potential outcomes framework to analyze spillover effects using instrumental variables. I characterize the population compliance types in a setting in which spillovers can occur on both treatment take-up and outcomes, and provide conditions for identification of the marginal distribution of compliance types. I show that intention-to-treat (ITT) parameters aggregate multiple direct and spillover effects for different compliance types, and hence do not have a clear link to causally interpretable parameters. Moreover, rescaling ITT parameters by first-stage estimands generally recovers a weighted combination of average effects where the sum of weights is larger than one. I then analyze identification of causal direct and spillover effects under one-sided noncompliance, and show that causal effects can be estimated by 2SLS in this case. I illustrate the proposed methods using data from an experiment on social interactions and voting behavior. I also introduce an alternative assumption, independence of the peers' types, that identifies parameters of interest under two-sided noncompliance by restricting the amount of heterogeneity in average potential outcomes. Supplementary material of this article will be available in online.
引用
收藏
页码:1911 / 1922
页数:12
相关论文
共 50 条
  • [21] Conditions Sufficient to Infer Causal Relationships Using Instrumental Variables and Observational Data
    Henry L. Bryant
    David A. Bessler
    [J]. Computational Economics, 2016, 48 : 29 - 57
  • [22] Conditions Sufficient to Infer Causal Relationships Using Instrumental Variables and Observational Data
    Bryant, Henry L.
    Bessler, David A.
    [J]. COMPUTATIONAL ECONOMICS, 2016, 48 (01) : 29 - 57
  • [23] Spillover Effects of Community Uninsurance on Working-age Adults and Seniors An Instrumental Variables Analysis
    Gresenz, Carole Roan
    Escarce, Jose J.
    [J]. MEDICAL CARE, 2011, 49 (09) : E14 - E21
  • [24] Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships
    Rassen, Jeremy A.
    Brookhart, M. Alan
    Glynn, Robert J.
    Mittleman, Murray A.
    Schneeweiss, Sebastian
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2009, 62 (12) : 1226 - 1232
  • [25] Causal mediation analysis in instrumental-variables regressions
    Dippel, Christian
    Ferrara, Andreas
    Heblich, Stephan
    [J]. STATA JOURNAL, 2020, 20 (03): : 613 - 626
  • [26] Instrumental Variables Analysis and Mendelian Randomization for Causal Inference
    Moodie, Erica E. M.
    le Cessie, Saskia
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2024,
  • [27] Frameworks for estimating causal effects in observational settings: comparing confounder adjustment and instrumental variables
    Roy S. Zawadzki
    Joshua D. Grill
    Daniel L. Gillen
    [J]. BMC Medical Research Methodology, 23
  • [28] Direct and indirect treatment effects-causal chains and mediation analysis with instrumental variables
    Froelich, Markus
    Huber, Martin
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (05) : 1645 - 1666
  • [29] Frameworks for estimating causal effects in observational settings: comparing confounder adjustment and instrumental variables
    Zawadzki, Roy S. D.
    Grill, Joshua D. L.
    Gillen, Daniel L.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
  • [30] On the Estimation Accuracy of Causal Effects using Supplementary Variables
    Kuroki, Manabu
    Hayashi, Takahiro
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (02) : 505 - 519