A modified Runge-Kutta method for increasing stability properties

被引:3
|
作者
Hu, Guang-Da [1 ,2 ]
Wang, Zheng [2 ]
机构
[1] Shanghai Customs Coll, Shanghai 201204, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Control theory; Nonlinear ODEs; Runge-Kutta methods; Increasing stability properties; Gradient; NONLINEAR CONTROL;
D O I
10.1016/j.cam.2023.115698
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In control theory, we are interested mainly in investigating asymptotic stability of systems. In this paper explicit Runge-Kutta methods are investigated for numerical solutions of nonlinear ODEs with known strict Lyapunov functions. In order to increase stability properties, a modified version of explicit Runge-Kutta methods is presented. The modified Runge-Kutta method is explicit. It is different from the projection methods in literature which are implicit. Comparing with the standard Runge-Kutta method, the modified Runge-Kutta one has better stability properties. Numerical examples are provided to illustrate the effectiveness of the modified Runge-Kutta method.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] GENERALIZED RUNGE-KUTTA METHOD
    LENSING, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1976, 56 (11): : 503 - 504
  • [12] Integration method and Runge-Kutta method
    Sanprasert, Wannaporn
    Chundang, Ungsana
    Podisuk, Maitree
    PROCEEDINGS OF THE 15TH AMERICAN CONFERENCE ON APPLIED MATHEMATICS AND PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES 2009, VOLS I AND II, 2009, : 232 - +
  • [13] On modified Runge-Kutta trees and methods
    Tsitouras, Ch
    Famelis, I. Th
    Simos, T. E.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) : 2101 - 2111
  • [14] RUNGE-KUTTA STABILITY ON A FLOQUET PROBLEM
    HIGHAM, DJ
    BIT, 1994, 34 (01): : 88 - 98
  • [15] On the stability of symmetric Runge-Kutta formulas
    Kulikov, GY
    DOKLADY MATHEMATICS, 2003, 67 (02) : 184 - 188
  • [16] STABILITY OF EXPLICIT RUNGE-KUTTA METHODS
    SHAMPINE, LF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1984, 10 (06) : 419 - 432
  • [17] Symmetric Runge-Kutta methods and their stability
    Kulikov, GY
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2003, 18 (01) : 13 - 41
  • [18] STABILITY OF A RUNGE-KUTTA METHOD FOR THE EULER EQUATIONS ON A SUBSTRUCTURED DOMAIN
    OTTO, K
    THUNE, M
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (01): : 154 - 174
  • [19] STABILITY OF A RUNGE-KUTTA METHOD FOR THE NAVIER-STOKES EQUATION
    SOWA, J
    BIT, 1990, 30 (03): : 542 - 560
  • [20] Selecting Explicit Runge-Kutta Methods with Improved Stability Properties
    Zlatev, Zahari
    Georgiev, Krassimir
    Dimov, Ivan
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015, 2015, 9374 : 409 - 416