For a word n and an integer i, we define L(n) to be the length of the longest subsequence of the form i(i + 1) center dot center dot center dot j for some i, and we let L1(n) be the length of the longest such subsequence beginning with 1. In this paper, we estimate the expected values of L1(n) and L(n) when n is chosen uniformly at random from all words which use each of the first n positive integers exactly m times. We show that E[L1(n)] similar to m if n is sufficiently large in terms of m as m tends towards infinity, confirming a conjecture of Diaconis, Graham, He, and Spiro. We also show that E[L(n)] is asymptotic to the inverse gamma function Gamma-1(n) if n is sufficiently large in terms of m as m tends towards infinity.(c) 2023 Elsevier Ltd. All rights reserved.
机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, Brazil
Univ Paris Saclay, Univ Paris Sud, LPTMS, CNRS UMR 8626, F-91405 Orsay, FranceUniv Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, Brazil
Mendonca, J. Ricardo G.
论文数: 引用数:
h-index:
机构:
Schawe, Hendrik
Hartmann, Alexander K.
论文数: 0引用数: 0
h-index: 0
机构:
Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, GermanyUniv Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, Brazil
机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-05508 Sao Paulo, SP, BrazilUniv Sao Paulo, Escola Artes Ciencias & Humanidades, BR-05508 Sao Paulo, SP, Brazil