Kernel density estimation by genetic algorithm

被引:0
|
作者
Nishida, Kiheiji [1 ]
机构
[1] Hyogo Med Univ, Sch Pharm, Kobe, Hyogo, Japan
关键词
Kernel density estimation; genetic algorithm; data condensation; sparse representation; BREGMAN DIVERGENCE; REGRESSION;
D O I
10.1080/00949655.2022.2134379
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study proposes a data condensation method for multivariate kernel density estimation by genetic algorithm. First, our proposed algorithm generates multiple subsamples of a given size with replacement from the original sample. The subsamples and their constituting data points are regarded as chromosome and gene, respectively, in the terminology of genetic algorithm. Second, each pair of subsamples breeds two new subsamples, where each data point faces either crossover, mutation, or reproduction with a certain probability. The dominant subsamples in terms of fitness values are inherited by the next generation. This process is repeated generation by generation and results in a kernel density estimator with sparse representation in its completion. We confirmed from simulation studies that the resulting estimator can perform better than other well-known density estimators.
引用
收藏
页码:1263 / 1281
页数:19
相关论文
共 50 条
  • [1] Hybrid kernel density estimation for discriminant analysis with information complexity and genetic algorithm
    Baek, Seung H.
    Park, Dong-Ho
    Bozdogan, Hamparsum
    KNOWLEDGE-BASED SYSTEMS, 2016, 99 : 79 - 91
  • [2] Resampling of Data for Offshore Grid Design based on Kernel Density Estimation and Genetic Algorithm
    Tai, Vin Cent
    Uhlen, Kjetil
    12TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, (EERA DEEPWIND 2015), 2015, 80 : 365 - 375
  • [3] Kernel density estimation of three-parameter Weibull distribution with neural network and genetic algorithm
    Yang, Fan
    Yue, Zhufeng
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 803 - 814
  • [4] A new algorithm for clustering based on kernel density estimation
    Matioli, L. C.
    Santos, S. R.
    Kleina, M.
    Leite, E. A.
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (02) : 347 - 366
  • [5] Kernel density estimation by stagewise algorithm with a simple dictionary
    Kiheiji Nishida
    Kanta Naito
    Computational Statistics, 2024, 39 : 523 - 560
  • [6] Kernel density estimation by stagewise algorithm with a simple dictionary
    Nishida, Kiheiji
    Naito, Kanta
    COMPUTATIONAL STATISTICS, 2024, 39 (02) : 523 - 560
  • [7] A Parabolic Detection Algorithm Based on Kernel Density Estimation
    Liu, Xiaomin
    Song, Qi
    Li, Peihua
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PROCEEDINGS, 2009, 5754 : 405 - 412
  • [8] Estimation of error diffusion kernel using genetic algorithm
    Park, SH
    Kang, KM
    Kim, CW
    COLOR IMAGING: DEVICE-INDEPENDENT COLOR, COLOR HARDCOPY, AND GRAPHIC ARTS III, 1998, 3300 : 330 - 340
  • [9] A Greedy Algorithm for Unimodal Kernel Density Estimation by Data Sharpening
    Wolters, Mark A.
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 47 (06): : 1 - 26
  • [10] Versatile sequential sampling algorithm using Kernel Density Estimation
    Roy, Pamphile T.
    Jofre, Lluis
    Jouhaud, Jean-Christophe
    Cuenot, Benedicte
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 284 (01) : 201 - 211