Object Detection with YOLOv7 Model on Smart Mobile Devices

被引:0
|
作者
Karadag, Batuhan [1 ,2 ]
Ari, Ali [3 ]
机构
[1] Inonu Univ, Fen Bilimleri Enstitusu, Bilgisayar Muhendisligi Bolumu, Malatya, Turkiye
[2] Iskenderun Tekn Univ, Muhendisl & Doga Bilimleri Fak, Bilgisayar Muhendisligi Bolumu, Hatay, Turkiye
[3] Inonu Univ, Muhendisl Fak, Bilgisayar Muhendisligi Bolumu, Malatya, Turkiye
来源
关键词
YOLOv7; Object Detection; Mobile Object Detection; Mobile YOLOv7;
D O I
10.2339/politeknik.1296541
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The YOLOv7 model, which is one of the current object detection algorithms based on deep learning, achieved an average accuracy of 51.2% in the Microsoft COCO dataset, proving that it is ahead of other object detection methods. YOLO has been a preferred model for object detection problems in the commercial field since it was first introduced, due to its speed , accuracy. Generally, high-capacity hardware is needed to run deep learning-based systems. In this study, it is aimed to detect objects in smart mobile devices without using a graphic processor unit by activating the YOLOv7 model on the server in order to be able to detect objects in smart mobile devices, which have become one of the important tools of trade today. With the study, the YOLOv7 object detection algorithm has been successfully run on mobile devices with iOS operating system. In this way, an image taken on mobile devices or already in the gallery after any image is transferred to the server, it is ensured that the objects in the image are detected effectively in terms of accuracy and speed.
引用
收藏
页码:1207 / 1214
页数:10
相关论文
共 50 条
  • [1] Dense Small Object Detection Based on an Improved YOLOv7 Model
    Chen, Xun
    Deng, Linyi
    Hu, Chao
    Xie, Tianyi
    Wang, Chengqi
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [2] Improved YOLOv7 model for underwater sonar image object detection
    Qin, Ken Sinkou
    Liu, Di
    Wang, Fei
    Zhou, Jingchun
    Yang, Jiaxuan
    Zhang, Weishi
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100
  • [3] Improved Underwater Object Detection Algorithm of YOLOv7
    Liang, Xiuman
    Li, Ran
    Yu, Haifeng
    Liu, Zhendong
    Computer Engineering and Applications, 2024, 60 (06) : 89 - 99
  • [4] Improved YOLOv7 for UAV Image Object Detection
    Zou, Zhentao
    Li, Zeping
    Computer Engineering and Applications, 60 (08): : 173 - 181
  • [5] Study on Lightweight Model of Maize Seedling Object Detection Based on YOLOv7
    Zhao, Kai
    Zhao, Lulu
    Zhao, Yanan
    Deng, Hanbing
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [6] Small object detection model for UAV aerial image based on YOLOv7
    Jinguang Chen
    Ronghui Wen
    Lili Ma
    Signal, Image and Video Processing, 2024, 18 : 2695 - 2707
  • [7] Small object detection model for UAV aerial image based on YOLOv7
    Chen, Jinguang
    Wen, Ronghui
    Ma, Lili
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2695 - 2707
  • [8] A Trash Detection Model Based on YOLOv7
    Liang, Hu
    Xu, Chao
    He, Tao
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 300 - 303
  • [9] Real-time Object Detection Performance Analysis Using YOLOv7 on Edge Devices
    Santos, Ricardo C. Camara De M.
    Coelho, Mateus
    Oliveira, Ricardo
    IEEE Latin America Transactions, 2024, 22 (10): : 799 - 805
  • [10] PBA-YOLOv7: An Object Detection Method Based on an Improved YOLOv7 Network
    Sun, Yang
    Li, Yi
    Li, Song
    Duan, Zehao
    Ning, Haonan
    Zhang, Yuhang
    APPLIED SCIENCES-BASEL, 2023, 13 (18):