MultiViT: Multimodal Vision Transformer for Schizophrenia Prediction using Structural MRI and Functional Network Connectivity Data

被引:2
|
作者
Bi, Yuda [1 ]
Abrol, Anees [1 ]
Fu, Zening [1 ]
Calhoun, Vince [1 ]
机构
[1] TReNDS Ctr, Atlanta, GA 30303 USA
关键词
Deep learning; brain disease; structural MRI;
D O I
10.1109/ISBI53787.2023.10230385
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vision Transformer (ViT) is a pioneering deep learning framework that can address real-world computer vision issues, such as image classification and object recognition. Importantly, ViTs are proven to outperform traditional deep learning models, such as convolutional neural networks (CNNs). Relatively recently, a number of ViT mutations have been transplanted into the field of medical imaging, thereby resolving a variety of critical classification and segmentation challenges, especially in terms of brain imaging data. In this work, we provide a novel multimodal deep learning pipeline, MultiViT, which is capable of analyzing both structural MRI (sMRI) and static functional network connectivity (sFNC) data for the prediction of schizophrenia disease. On a dataset with minimal training subjects, our novel model can achieve an AUC of 0.832. Finally, we visualize multiple brain regions and covariance patterns most relevant to schizophrenia based on the resulting ViT attention maps by extracting features from transformer encoders.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Network Analysis of the Default Mode Network Using Functional Connectivity MRI in Temporal Lobe Epilepsy
    Haneef, Zulfi
    Lenartowicz, Agatha
    Yeh, Hsiang J.
    Engel, Jerome, Jr.
    Stern, John M.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (90):
  • [32] Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study
    Mueller, Sophia
    Keeser, Daniel
    Samson, Andrea C.
    Kirsch, Valerie
    Blautzik, Janusch
    Grothe, Michel
    Erat, Okan
    Hegenloh, Michael
    Coates, Ute
    Reiser, Maximilian F.
    Hennig-Fast, Kristina
    Meindl, Thomas
    PLOS ONE, 2013, 8 (06):
  • [33] STRUCTURAL AND FUNCTIONAL BRAIN NETWORK CONNECTIVITY IN PRENATAL ALCOHOL EXPOSED NEONATES AS ASSESSED BY MULTIMODAL BRAIN IMAGING
    Roos, A.
    Fouche, J. P.
    Ipser, J. C.
    Narr, K. L.
    Woods, R. P.
    Zar, H. J.
    Stein, D. J.
    Donald, K. A.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2018, 42 : 110A - 110A
  • [34] Structural degree predicts functional network connectivity: A multimodal resting-state fMRI and MEG study
    Tewarie, P.
    Hillebrand, A.
    van Dellen, E.
    Schoonheim, M. M.
    Barkhof, F.
    Polman, C. H.
    Beaulieu, C.
    Gong, G.
    van Dijk, B. W.
    Stam, C. J.
    NEUROIMAGE, 2014, 97 : 296 - 307
  • [35] Modelling of Flood Prediction by Optimizing Multimodal Data Using Regression Network
    Rajeshkannan, C.
    Kogilavani, S., V
    MOBILE COMPUTING AND SUSTAINABLE INFORMATICS, 2022, 68 : 489 - 511
  • [36] Group learning using contrast NMF : Application to functional and structural MRI of schizophrenia
    Potluru, Vamsi K.
    Calhoun, Vince D.
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 1336 - +
  • [37] Functional MRI Data Analysis Using Connectivity Strengths to Identify Cognitive States
    Ramakrishna, J. Siva
    Ramasangu, Hariharan
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 578 - 582
  • [38] GPU-Accelerated Dynamic Functional Connectivity Analysis for Functional MRI Data Using OpenCL
    Akgun, Devrim
    Sakoglu, Uenal
    Mete, Mutlu
    Esquivel, Johnny
    Adinoff, Bryon
    2014 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY (EIT), 2014, : 479 - 484
  • [39] Effects of Antipsychotic Medication in Patients with Schizophrenia using Dynamic Functional Network Connectivity Analysis
    Lottman, Kristin K.
    White, David M.
    Kraguljac, Nina V.
    Calhoun, Vince D.
    Lahti, Adrienne C.
    BIOLOGICAL PSYCHIATRY, 2016, 79 (09) : 382S - 382S
  • [40] Convergence of Specifically Altered Intrinsic Brain Connectivity and Aberrant Brain Volume in Schizophrenia Transdiagnostic Multimodal Meta-Analysis of Resting-State Functional and Structural MRI
    Brandl, Felix
    Avram, Mihai
    Shang, Jing
    Simoes, Beatriz
    Bertram, Teresa
    Ayala, Daniel Hoffmann
    Weise, Benedikt
    Penzel, Nora
    Guersel, Deniz
    Baeuml, Josef
    Wohlschlaeger, Afra
    Vukadinovic, Zoran
    Koutsouleris, Nikolaos
    Leucht, Stefan
    Sorg, Christian
    BIOLOGICAL PSYCHIATRY, 2018, 83 (09) : S437 - S438