Comparison of CNN-based deep learning architectures for rice diseases classification

被引:28
|
作者
Ahad, Md Taimur [1 ]
Li, Yan [2 ]
Song, Bo [3 ]
Bhuiyan, Touhid [4 ]
机构
[1] Daffodil Int Univ, Dept Comp Sci & Engn, Savar, Bangladesh
[2] Univ Southern Queensland, Sch Math Phys & Comp, Toowoomba, Australia
[3] Univ Southern Queensland, Sch Engn, Toowoomba, Australia
[4] Daffodil Int Univ, Fac Sci & Informat Technol, Dept Comp Sci & Engn, Savar, Bangladesh
关键词
Deep learning; Convolutional neural networks (CNNs); Transfer learning; Plant leaf disease detection;
D O I
10.1016/j.aiia.2023.07.001
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Although convolutional neural network (CNN) paradigms have expanded to transfer learning and ensemble models from original individual CNN architectures, few studies have focused on the performance comparison of the applicability of these techniques in detecting and localizing rice diseases. Moreover, most CNN-based rice disease detection studies only considered a small number of diseases in their experiments. Both these short-comings were addressed in this study. In this study, a rice disease classification comparison of six CNN-based deep-learning architectures (DenseNet121, Inceptionv3, MobileNetV2, resNext101, Resnet152V, and Seresnext101) was conducted using a database of nine of the most epidemic rice diseases in Bangladesh. In ad-dition, we applied a transfer learning approach to DenseNet121, MobileNetV2, Resnet152V, Seresnext101, and an ensemble model called DEX (Densenet121, EfficientNetB7, and Xception) to compare the six individual CNN net-works, transfer learning, and ensemble techniques. The results suggest that the ensemble framework provides the best accuracy of 98%, and transfer learning can increase the accuracy by 17% from the results obtained by Seresnext101 in detecting and localizing rice leaf diseases. The high accuracy in detecting and categorisation rice leaf diseases using CNN suggests that the deep CNN model is promising in the plant disease detection domain and can significantly impact the detection of diseases in real-time agricultural systems. This research is significant for farmers in rice-growing countries, as like many other plant diseases, rice diseases require timely and early identification of infected diseases and this research develops a rice leaf detection system based on CNN that is ex-pected to help farmers to make fast decisions to protect their agricultural yields and quality. & COPY; 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:22 / 35
页数:14
相关论文
共 50 条
  • [41] Efficient deep CNN-based gender classification using Iris wavelet scattering
    Saeed Aryanmehr
    Farsad Zamani Boroujeni
    Multimedia Tools and Applications, 2023, 82 : 19041 - 19065
  • [42] Improving Deep CNN-Based Radar Target Classification Performance a Denoise Filter
    Nguyen, Van-Tra
    Vu, Chi-Thanh
    Doan, Van-Sang
    JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, 2024, 24 (02): : 198 - 205
  • [43] Efficient deep CNN-based gender classification using Iris wavelet scattering
    Aryanmehr, Saeed
    Boroujeni, Farsad Zamani
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (12) : 19041 - 19065
  • [44] Multiclass wound image classification using an ensemble deep CNN-based classifier
    Rostami, Behrouz
    Anisuzzaman, D. M.
    Wang, Chuanbo
    Gopalakrishnan, Sandeep
    Niezgoda, Jeffrey
    Yu, Zeyun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [45] pcPromoter-CNN: A CNN-Based Prediction and Classification of Promoters
    Shujaat, Muhammad
    Wahab, Abdul
    Tayara, Hilal
    Chong, Kil To
    GENES, 2020, 11 (12) : 1 - 11
  • [46] CNN-Based Broad Learning System
    Li, Ting
    Fang, Bin
    Qian, Jiye
    Wu, Xuegang
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 132 - 136
  • [47] Optimum CNN-Based Plant Mutant Classification
    Goh, Yeh Huann
    Ng, Chee Ho
    Lee, Yoon Ket
    Teoh, Choe Yung
    Goh, Yann Ling
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0679 - 0682
  • [48] CNN-Based Malware Family Classification and Evaluation
    Hebish, Mohamed Wael
    Awni, Mohamed
    2024 14TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEENG 2024, 2024, : 219 - 224
  • [49] Microseismic event waveform classification using CNN-based transfer learning models
    Dong, Longjun
    Shu, Hongmei
    Tang, Zheng
    Yan, Xianhang
    INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2023, 33 (10) : 1203 - 1216
  • [50] Infrasound threat classification: A statistical comparison of deep learning architectures
    Solomon, Mitchell L.
    Bryan, Kaylen J.
    Smith, Kaleb E.
    Clauter, Dean A.
    Smith, Anthony O.
    Peter, Adrian M.
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XIX, 2018, 10629