A new approach to prediction riboflavin absorbance using imprinted polymer and ensemble machine learning algorithms

被引:2
|
作者
Yarahmadi, Bita [1 ]
Hashemianzadeh, Seyed Majid [2 ]
Hosseini, Seyed Mohammad -Reza Milani [1 ]
机构
[1] Iran Univ Sci & Technol, Dept Chem, Real Samples Anal Lab, Tehran, Iran
[2] Iran Univ Sci & Technol, Dept Chem, Mol Simulat Res Lab, Tehran, Iran
关键词
Riboflavin; Machine learning; Ensemble algorithm; Molecularly imprinted polymer; QUANTUM DOTS; SENSOR; EXTRACTION;
D O I
10.1016/j.heliyon.2023.e17953
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecularly imprinted polymer (MIP) is useful for measuring the amount of riboflavin (vitamin B2), in various samples using UV/Vis instruments. The practical optimization of the MIP synthesis conditions has a number of drawbacks, like the need to spend money, the need to spend time, the use of the compounds that cause contamination, needing laboratory equipment and tools. Using machine learning (ML) to predict the amount of riboflavin absorbance is a creative solution to overcome the problems and shortcomings of optimizing polymer synthesis conditions. In fact, by using the model without needing real work in the laboratory, the optimum laboratory conditions are determined, and as a result the maximized absorption of the riboflavin is obtained. In this paper, MIP was synthesized for selective extraction of the riboflavin, and UV/Vis spectrophotometry was used to quantitatively measure riboflavin absorbance. Various factors affect the performance of the polymer. The effect of six important factors, including the molar ratio of the template, the molar ratio of monomer, the molar ratio of cross-linker, loading time, stirring rate, and pH, were investigated. Then, using ensemble ML algorithms, like gradient boosting (GB), extra trees (ET), random forest (RF), and Ada boost (Ada) algorithms, an accurate model was created to predict the riboflavin absorption. Also, the mutual information feature selection method was used to determine the important features. The results of using feature selection method was shown that variables such as the molar ratio of the template, the molar ratio of the monomer, and the molar ratio of the cross-linker had a high effect on riboflavin absorbance. The GB and Ada boost algorithms performed better than ET and RF algorithms. After tuning the nestimator hyper parameter (n-estimator = 300), the GB algorithm was shown an excellent performance in predicting the absorbance of riboflavin and the maximum R2-scoring of the model was obtained at 0.965995, the minimum of the mean absolute error (MAE), and mean square error (MSE) of the model respectively were obtained -0.003711 and -0.000078. Therefore, by using the proposed model, it is possible to predict riboflavin absorbance theoretically, and with high accuracy by changing the inputs of model, and using the model instead of working in the lab saves time, money, chemical compounds, and lab ware.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Explainable Heart Disease Prediction Using Ensemble-Quantum Machine Learning Approach
    Abdulsalam, Ghada
    Meshoul, Souham
    Shaiba, Hadil
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (01): : 761 - 779
  • [32] A Novel Ensemble Machine Learning Approach for Bioarchaeological Sex Prediction
    Muzzall, Evan
    TECHNOLOGIES, 2021, 9 (02)
  • [33] Software Defect Prediction: A Machine Learning Approach with Voting Ensemble
    Mosquera, Marcela
    Hurtado, Remigio
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 3, 2024, 1013 : 585 - 595
  • [34] Phishing Attacks Detection Using Ensemble Machine Learning Algorithms
    Innab, Nisreen
    Osman, Ahmed Abdelgader Fadol
    Ataelfadiel, Mohammed Awad Mohammed
    Abu-Zanona, Marwan
    Elzaghmouri, Bassam Mohammad
    Zawaideh, Farah H.
    Alawneh, Mouiad Fadeil
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 1325 - 1345
  • [35] Cardiac Arrhythmia Detection Using Ensemble of Machine Learning Algorithms
    Abirami, R. Nandhini
    Vincent, P. M. Durai Raj
    SOFT COMPUTING FOR PROBLEM SOLVING, SOCPROS 2018, VOL 2, 2020, 1057 : 475 - 487
  • [36] Code Smell Detection Using Ensemble Machine Learning Algorithms
    Dewangan, Seema
    Rao, Rajwant Singh
    Mishra, Alok
    Gupta, Manjari
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [37] Prediction of CardioVascular Disease (CVD) using Ensemble Learning Algorithms
    Oswald, C.
    Sathwika, Gadi Jaya
    Bhattacharya, Arnab
    PROCEEDINGS OF THE 5TH JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE & MANAGEMENT OF DATA, CODS COMAD 2022, 2022, : 292 - 293
  • [38] Machine learning algorithms using binary classification and multi model ensemble techniques for skin diseases prediction
    Chaurasia, Vikas
    Pal, Saurabh
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2020, 34 (01) : 57 - 74
  • [39] Improvement in Software Defect Prediction Outcome Using Principal Component Analysis and Ensemble Machine Learning Algorithms
    Dhamayanthi, N.
    Lavanya, B.
    INTERNATIONAL CONFERENCE ON INTELLIGENT DATA COMMUNICATION TECHNOLOGIES AND INTERNET OF THINGS, ICICI 2018, 2019, 26 : 397 - 406
  • [40] Hybrid of Ensemble Machine Learning and Nature-Inspired Algorithms for Divorce Prediction
    Sahle, Kalkidan A.
    Yibre, Abdulkerim M.
    PAN-AFRICAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PT II, PANAFRICON AI 2023, 2024, 2069 : 242 - 264