Regularity of the attractor for a fractional Klein-Gordon-Schrodinger system with cubic nonlinearities

被引:1
|
作者
Missaoui, Salah [1 ,2 ]
机构
[1] Univ Monastir, Dept Math, Fac Sci Monastir, Monastir, Tunisia
[2] Univ Kairouan, Dept Math, Inst Preparatory Studies Engn Kairouan, Kairouan, Tunisia
关键词
asymptotic compactness; bounded absorbing set; global attractor; Klein-Gordon-Schrodinger equation; EQUATIONS;
D O I
10.1002/mma.9548
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long time behavior of the solutions for a weakly damped forced nonlinear fractional Klein-Gordon-Schrodinger system iu(t) + ivu + i|u|(2)u - (-Delta)alpha u + vu =f, v(tt) + gamma v(t) - Delta v + v + v(3) - |u|(2) = g, for a given alpha epsilon (1/2, 1) considered in thewhole space R. We prove that this system provides an infinite dimensional dynamical system in H-alpha (R) x H-1(R) x L-2(R) that possesses a global attractor... in the same space andmore particularly that this attractor is in fact a compact set of H-2 alpha (R) x H1+alpha (R) x H-alpha (R).
引用
收藏
页码:18111 / 18125
页数:15
相关论文
共 50 条
  • [41] Exponential decay for a Klein-Gordon-Schrodinger system with locally distributed damping
    Poulou, Marilena
    Filippakis, Michael
    Zanchetta, Janaina
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (02) : 1 - 19
  • [42] The general Klein-Gordon-Schrodinger system: modulational instability and exact solutions
    Tang, Xiao-Yan
    Ding, Wei
    PHYSICA SCRIPTA, 2008, 77 (01)
  • [43] STABILITY PROPERTIES OF PERIODIC STANDING WAVES FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM
    Natali, Fabio
    Pastor, Ademir
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (02) : 413 - 430
  • [44] UNIFORM DECAY FOR A LOCAL DISSIPATIVE KLEIN-GORDON-SCHRODINGER TYPE SYSTEM
    Poulou, Marilena N.
    Stavrakakis, Nikolaos M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [45] A Fourier spectral method for the nonlinear coupled space fractional Klein-Gordon-Schrodinger equations
    Jia, Junqing
    Jiang, Xiaoyun
    Yang, Xiu
    Zhang, Hui
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (02):
  • [46] COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS .2.
    FUKUDA, I
    TSUTSUMI, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) : 358 - 378
  • [47] Upper semicontinuity of attractors for the Klein-Gordon-Schrodinger equation
    Lu, KN
    Wang, BX
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (01): : 157 - 168
  • [48] The periodic wave solutions for the Klein-Gordon-Schrodinger equations
    Wang, ML
    Zhou, YB
    PHYSICS LETTERS A, 2003, 318 (1-2) : 84 - 92
  • [49] LOW REGULARITY GLOBAL WELL-POSEDNESS FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM WITH THE HIGHER-ORDER YUKAWA COUPLING
    Miao, Changxing
    Xu, Guixiang
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (06) : 643 - 656
  • [50] Global attractor for a degenerate Klein-Gordon-Schrodinger-type system
    Poulou, M. N.
    Zographopoulos, N. B.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2023, 38 (01): : 121 - 139