MIL-100(Fe)-Based Composite Films for Food Packaging

被引:1
|
作者
Pak, Alexandra M. [1 ,2 ]
Maiorova, Elena A. [1 ,2 ]
Siaglova, Elizaveta D. [1 ,2 ]
Aliev, Teimur M. [1 ]
Strukova, Elena N. [3 ]
Kireynov, Aleksey V. [4 ]
Piryazev, Alexey A. [5 ]
Novikov, Valentin V. [2 ,4 ]
机构
[1] Russian Acad Sci, Nesmeyanov Inst Organoelement Cpds, Vavilova Str 28, Moscow 119991, Russia
[2] Natl Res Univ, Moscow Inst Phys & Technol, Institutskiy Per 9, Dolgoprudnyi 141700, Russia
[3] Russian Acad Sci, Gause Inst New Antibiot, B Pirogovskaya Str 11-1, Moscow 119021, Russia
[4] Bauman Moscow State Tech Univ, Sci & Educ Ctr Composites Russia, 2nd Baumanskaya Str 5, Moscow 105005, Russia
[5] Sirius Univ Sci & Technol, Res Ctr Genet & Life Sci, Sci Direct Biomat, 1 Olymp Ave, Soci 354340, Russia
基金
俄罗斯科学基金会;
关键词
biocompatible metal-organic frameworks; active food packaging; hydrocolloids; composite materials; ESSENTIAL OIL; ANTIBACTERIAL; HYDROGELS; RELEASE;
D O I
10.3390/nano13111714
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A biocompatible metal-organic framework MIL-100(Fe) loaded with the active compounds of tea tree essential oil was used to produce composite films based on ?-carrageenan and hydroxypropyl methylcellulose with the uniform distribution of the particles of this filler. The composite films featured great UV-blocking properties, good water vapor permeability, and modest antibacterial activity against both Gram-negative and Gram-positive bacteria. The use of metal-organic frameworks as containers of hydrophobic molecules of natural active compounds makes the composites made from naturally occurring hydrocolloids attractive materials for active packaging of food products.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Atomistic Modeling of Water Thermodynamics and Kinetics within MIL-100(Fe)
    Kolokathis, Panagiotis D.
    Pantatosaki, Evangelia
    Papadopouos, George K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (34): : 20074 - 20084
  • [22] Adsorption behavior and mechanism of action of magnetic MIL-100(Fe) on MB
    Fu, Qiaofang
    Wu, Ying
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (06)
  • [23] MIL-100(Fe)/ZnFe2o4 /PCN
    Xu, Kailin
    Jiao, Li
    Wang, Chuqiao
    Bu, Yiming
    Tang, Yuling
    Qiu, Liwei
    Zhang, Qiuya
    Wang, Liping
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2022, 111 : 93 - 103
  • [24] Doxorubicin Loading Capacity of MIL-100(Fe): Effect of Synthesis Conditions
    Abhik Bhattacharjee
    Mihir Kumar Purkait
    Sasidhar Gumma
    Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30 : 2366 - 2375
  • [25] MIL-100(Fe)-catalyzed efficient conversion of hexoses to lactic acid
    Huang, Shan
    Yang, Kai-Li
    Liu, Xiao-Fang
    Pan, Hu
    Zhang, Heng
    Yang, Song
    RSC ADVANCES, 2017, 7 (10): : 5621 - 5627
  • [26] Doxorubicin Loading Capacity of MIL-100(Fe): Effect of Synthesis Conditions
    Bhattacharjee, Abhik
    Purkait, Mihir Kumar
    Gumma, Sasidhar
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2020, 30 (07) : 2366 - 2375
  • [27] Aluminum-Decorated MIL-100(Fe) Nanozyme for the Detection of Glutathione
    Cui, Lin
    Zhao, Xinshuo
    Zhang, Jiankang
    Zhou, Zhan
    Lin, Dong
    Qin, Yong
    ACS APPLIED NANO MATERIALS, 2024, 7 (05) : 4764 - 4771
  • [28] 磁性MIL-100(Fe)微粒制备及其萃取应用
    吴官永
    王筱倩
    党雪平
    陈怀侠
    湖北大学学报(自然科学版), 2022, (03) : 265 - 269
  • [29] Mesoporous metal–organic framework MIL-100(Fe) as drug carrier
    Paulo G. M. Mileo
    Diony N. Gomes
    Daniel V. Gonçalves
    Sebastião M. P. Lucena
    Adsorption, 2021, 27 : 1123 - 1135
  • [30] Sandwich-like MIL-100(Fe)@Pt@MIL-100(Fe) nanoparticles for catalytic hydrogenation of 4-nitrophenol
    Chen, Zhiming
    Xu, Bo
    Wang, Xiaomei
    Zhang, Li
    Yang, Xiaoqing
    Li, Cuncheng
    CATALYSIS COMMUNICATIONS, 2017, 102 : 17 - 20