Microwave solvothermal synthesis of Component-Tunable High-Entropy oxides as High-Efficient and stable electrocatalysts for oxygen evolution reaction

被引:35
|
作者
Wang, Dan [1 ,2 ,3 ,4 ,5 ]
Duan, Chanqin [1 ,2 ]
He, Huan [1 ,2 ]
Wang, Zhiyuan [1 ,2 ,3 ]
Zheng, Runguo [1 ,2 ,3 ]
Sun, Hongyu [2 ]
Liu, Yanguo [1 ,2 ,3 ]
Liu, Chunli [4 ,5 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Peoples R China
[3] Key Lab Dielect & Electrolyte Funct Mat Hebei Prov, Qinhuangdao, Peoples R China
[4] Hankuk Univ Foreign Studies, Dept Phys, Yongin 17035, South Korea
[5] Hankuk Univ Foreign Studies, Oxide Res Ctr, Yongin 17035, South Korea
基金
中国国家自然科学基金;
关键词
High entropy oxide; Oxygen evolution reaction; Electrocatalyst; Microwave solvothermal; Catalytic activity;
D O I
10.1016/j.jcis.2023.05.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition-metal-based high-entropy oxides (HEOs) are appealing electrocatalysts for oxygen evolution reaction (OER) due to their unique structure, variable composition and electronic structure, outstanding electrocatalytic activity and stability. Herein, we propose a scalable high-efficiency microwave solvothermal strategy to fabricate HEO nano-catalysts with five earth-abundant metal elements (Fe, Co, Ni, Cr, and Mn) and tailor the component ratio to enhance the catalytic performance. (FeCoNi2CrMn)3O4 with a double Ni content exhibits the best electrocatalytic performance for OER, namely low overpotential (260 mV@10 mA cm-2), small Tafel slope and superb long-term durability without obvious potential change after 95 h in 1 M KOH. The extraordinary per-formance of (FeCoNi2CrMn)3O4 can be attributed to the large active surface area profiting from the nano structure, the optimized surface electronic state with high conductivity and suitable adsorption to intermediate benefitting from ingenious multiple-element synergistic effects, and the inherent structural stability of the high -entropy system. In addition, the obvious pH value dependable character and TMA+ inhibition phenomenon reveal that the lattice oxygen mediated mechanism (LOM) work together with adsorbate evolution mechanism (AEM) in the catalytic process of OER with the HEO catalyst. This strategy provides a new approach for the rapid synthesis of high-entropy oxide and inspires more rational designs of high-efficient electrocatalysts.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 50 条
  • [21] Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction
    Qiu, Hua-Jun
    Fang, Gang
    Gao, Jiaojiao
    Wen, Yuren
    Lv, Juan
    Li, Huanglong
    Xie, Guoqiang
    Liu, Xingjun
    Sun, Shuhui
    ACS MATERIALS LETTERS, 2019, 1 (05): : 526 - 533
  • [22] Ultrathin high-entropy layered double hydroxide electrocatalysts for enhancing oxygen evolution reaction
    Chu, Xianxu
    Wang, Ting
    Wang, Haoyuan
    Du, Bingbing
    Guo, Guanqun
    Zhou, Yanli
    Dong, Xuelin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1003
  • [23] Electrodeposition of Self-Supported High-Entropy Spinel Oxides for Stable Oxygen Evolution
    Zhang, Runlin
    Xu, Zijin
    Du, Zhengyan
    Wan, Yichen
    Yuan, Shaojie
    Zeng, Fanda
    Xu, Jian
    Meng, Zeshuo
    Hu, Xiaoying
    Tian, Hongwei
    INORGANIC CHEMISTRY, 2023, 62 (46) : 19052 - 19059
  • [24] Engineering Microdomains of Oxides in High-Entropy Alloy Electrodes toward Efficient Oxygen Evolution
    Chen, Zheng-Jie
    Zhang, Tao
    Gao, Xiao-Yu
    Huang, Yong-Jiang
    Qin, Xiao-Hui
    Wang, Yi-Fan
    Zhao, Kai
    Peng, Xu
    Zhang, Cheng
    Liu, Lin
    Zeng, Ming-Hua
    Yu, Hai-Bin
    ADVANCED MATERIALS, 2021, 33 (33)
  • [25] A Monolayer High-Entropy Layered Hydroxide Frame for Efficient Oxygen Evolution Reaction
    Ding, Yiran
    Wang, Zhouyang
    Liang, Zijia
    Sun, Xueping
    Sun, Zihang
    Zhao, Yuanxin
    Liu, Junlin
    Wang, Chenyang
    Zeng, Ziyue
    Fu, Lei
    Zeng, Mengqi
    Tang, Lin
    ADVANCED MATERIALS, 2023,
  • [26] High-entropy FeCoNiCuAlV sulfide as an efficient and reliable electrocatalyst for oxygen evolution reaction
    Zhao, Yao
    You, Junhua
    Wang, Zhaoyu
    Liu, Guangyi
    Huang, Xiaojuan
    Duan, Mingyi
    Zhang, Hangzhou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 70 : 599 - 605
  • [27] A highly efficient high-entropy metal hydroxymethylate electrocatalyst for oxygen evolution reaction
    Jiang, Qi
    Lu, Ruihu
    Gu, Junfeng
    Zhang, Long
    Liu, Kailong
    Huang, Mengyan
    Liu, Peng
    Zuo, Shiyu
    Wang, Yilong
    Zhao, Yan
    Ma, Peiyan
    Fu, Zhengyi
    CHEMICAL ENGINEERING JOURNAL, 2023, 453
  • [28] Effect of geometrical site confinement in high-efficient iron-doped cobalt oxides electrocatalysts toward oxygen evolution reaction
    Hong, Song-Fu
    Hsu, Ying-ya
    Chen, Hao Ming
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [29] High-Entropy Metal–Organic Framework Electrocatalyst for Efficient Oxygen Evolution Reaction
    Hui Long
    Yi-Na Li
    Wen-Jun Yang
    Li-Song Zhang
    Hong-Yun Wang
    Catalysis Letters, 2025, 155 (3)
  • [30] High-entropy alloy catalysts of FeCoNiCuMo/C with high stability for efficient oxygen evolution reaction
    Ma, Jiangtao
    Zhu, Yujun
    Huang, Kai
    Wang, Peng
    Liu, Dinghua
    Zhao, Yupei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 997