CO2 adsorption and activation on Ag(111) surfaces in the presence of surface charge density: A static gas phase DFT study

被引:9
|
作者
Sandoval, Mario G. [1 ]
Walia, Jaspreet [2 ]
Houache, Mohamed S. E. [3 ]
Abu-Lebdeh, Yaser [3 ]
Berini, Pierre [2 ,4 ]
Faccio, Ricardo [5 ,6 ]
Weck, Arnaud [1 ,4 ]
机构
[1] Univ Ottawa, Dept Mech Engn, Ottawa, ON K1N 6N5, Canada
[2] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
[3] Natl Res Council Canada, Energy Min & Environm Res Ctr, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
[4] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
[5] Univ Republica, Fac Quim, DETEMA, Area Fis, Montevideo 11800, Uruguay
[6] Univ Republica, Fac Quim, DETEMA, Ctr NanoMat, Montevideo 11800, Uruguay
基金
加拿大自然科学与工程研究理事会;
关键词
Surface plasmons; Silver; CO2; Adsorption reaction; CO2 assisted adsorption; Charge carrier density; MOLECULAR-DYNAMICS; ELECTROCHEMICAL REDUCTION; MECHANISM; ELECTRODES; CONVERSION; KINETICS;
D O I
10.1016/j.apsusc.2022.155498
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The CO2 reduction reaction on Ag in the presence of surface plasmons are of strong interest in photocatalysis. Here, two Density Functional Theory (DFT) approaches are proposed to localize charges at the Ag surface to mimic surface plasmon excitation. These calculations predict charge localization at the outermost surface layer, a result confirmed via light excitation at the plasmon resonance modeled by Density Functional Tight Binding Hamiltonian (DFTB) theory. The CO2(gas) reduction initial steps are studied by DFT models showing that bonded species can be created on top of an Ag-atom in the presence of extra charges. A second CO2 molecule can assist the first molecule, decreasing the charge carrier density requirement for CO2 reduction bonded species. A Molecular Dynamics (MD) study shows a possible interaction among CO2 molecule. These results show that a static DFT simulation can mimic charge localization resulting from surface plasmon effects, thus enabling studies on surface plasmon-enhanced chemical reactions, paving the way for future time-dependent (TD) studies.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A DFT Study of CO Adsorption on the Cu2O(111) Surface with Oxygen Vacancy
    孙宝珍
    陈文凯
    李奕
    陆春海
    Chinese Journal of Structural Chemistry, 2009, (03) : 311 - 314
  • [22] Adsorption of CO2 on the Surface of Fe(111): A First-Principles Study
    Cen, Dongliang
    SCIENCE OF ADVANCED MATERIALS, 2023, 15 (07) : 894 - 904
  • [23] A DFT Study of Methanol Synthesis from CO2 Hydrogenation on the Pd(111) Surface
    Zhang, Minhua
    Wu, Yufei
    Dou, Maobin
    Yu, Yingzhe
    CATALYSIS LETTERS, 2018, 148 (09) : 2935 - 2944
  • [24] A first principles study of the adsorption and dissociation of CO2 on the δ-Pu (111) surface
    Atta-Fynn, R.
    Ray, A. K.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 70 (02): : 171 - 184
  • [25] A first principles study of the adsorption and dissociation of CO2 on the δ-Pu (111) surface
    R. Atta-Fynn
    A. K. Ray
    The European Physical Journal B, 2009, 70 : 171 - 184
  • [26] A DFT Study of Methanol Synthesis from CO2 Hydrogenation on the Pd(111) Surface
    Minhua Zhang
    Yufei Wu
    Maobin Dou
    Yingzhe Yu
    Catalysis Letters, 2018, 148 : 2935 - 2944
  • [27] A periodic DFT study of CO adsorption over Pd–Cu alloy (111) surfaces
    Denis E. Zavelev
    Mark V. Tsodikov
    Andrey V. Chistyakov
    Sergey A. Nikolaev
    Research on Chemical Intermediates, 2022, 48 : 853 - 867
  • [28] Density functional study of CO2 adsorption on Pu(100) surface
    Meng Da-Qiao
    Luo Wen-Hua
    Li Gan
    Chen Hu-Chi
    ACTA PHYSICA SINICA, 2009, 58 (12) : 8224 - 8229
  • [29] Adsorption of thiophene on the RuS2 (100) and (111) surfaces:: A Laplacian of the electronic charge density study
    Aray, Y
    Rodríguez, J
    Vega, D
    Coll, S
    Rodríguez-Arias, EN
    Rosillo, F
    JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (51): : 13242 - 13249
  • [30] Adsorption of CH3I on Ag(111) and Ag2O(111) surface: A density functional theory study
    Yang, Lin
    Zhao, Yao Lin
    Li, Kui
    Chen, Zhong Cun
    Zhang, Peng
    Shi, Wei Qun
    CHEMICAL PHYSICS, 2018, 513 : 35 - 40