Printing quality control of cement-based materials under flow and rest conditions

被引:7
|
作者
Harbouz, Ilhame [1 ,2 ]
Yahia, Ammar [2 ]
Roziere, Emmanuel [1 ]
Loukili, Ahmed [1 ]
机构
[1] Nantes Univ, Ecole Cent Nantes, CNRS, GeM,UMR 6183, F-44000 Nantes, France
[2] Univ Sherbrooke, Dept Bldg & Civil Engn, Sherbrooke, PQ J1K 2R1, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
3D printing; Buildability; Breakdown; Build-up; Cement-based materials; Flow; Flocculation; Rigidification; Structuration; Time-dependent behavior; Thixotropy; YIELD-STRESS; THIXOTROPY; ADMIXTURES; CONCRETE; BEHAVIOR; PARAMETERS; EXTRUSION; KINETICS; BUILDUP; SHEAR;
D O I
10.1016/j.cemconcomp.2023.104965
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Time-dependent rheological properties of cement-based materials have a significant impact on 3D printing processes, where multiple rheological requirements should be met. A proper high rate of structural build-up is recommended to ensure the buildability and stability of printed elements. However, the loss of workability may occur rapidly, resulting in a significant reduction in print quality. Workability and buildability requirements usually interfere due to the time-dependent rheological behavior of cement-based materials under flow and rest conditions. This research aims to highlight the effects of time-dependent behavior on the printability of cement-based materials. The coupling mechanisms of microstructure development at rest and under shearing conditions are discussed. A new thixotropy index is proposed to quantify the printability window of cement-based materials based on their structuration rates. An experimental study was conducted on printable mortars incorporating a viscosity-modifying agent (VMA) to assess printing quality as a function of the degree of thixotropy. Different types of stability failures were captured and discussed.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The pH of Cement-based Materials: A Review
    Yousuf Sumra
    Shafigh Payam
    Ibrahim Zainah
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35 : 908 - 924
  • [42] THz Fingerprints of Cement-Based Materials
    Dolado, Jorge S.
    Goracci, Guido
    Duque, Eduardo
    Martauz, Pavel
    Zuo, Yibing
    Ye, Guang
    MATERIALS, 2020, 13 (18)
  • [43] Cement-based materials with graphene nanophase
    Dalla, P. T.
    Tragazikis, I. K.
    Exarchos, D. A.
    Dassios, K.
    Matikas, T. E.
    SMART MATERIALS AND NONDESTRUCTIVE EVALUATION FOR ENERGY SYSTEMS 2017, 2017, 10171
  • [44] The pH of Cement-based Materials:A Review
    Sumra Yousuf
    Payam Shafigh
    Zainah Ibrahim
    Journal of Wuhan University of Technology(Materials Science), 2020, 35 (05) : 908 - 924
  • [45] A review of cement-based materials as electroceramics
    Chung, D. D. L.
    Xi, Xiang
    CERAMICS INTERNATIONAL, 2023, 49 (15) : 24621 - 24642
  • [46] The pH of Cement-based Materials: A Review
    Yousuf, Sumra
    Shafigh, Payam
    Ibrahim, Zainah
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2020, 35 (05): : 908 - 924
  • [47] Rheology of extruded cement-based materials
    Kuder, Katherine G.
    Shah, Surendra P.
    ACI MATERIALS JOURNAL, 2007, 104 (03) : 283 - 290
  • [48] Investigation of the carbonation performance of cement-based materials under high temperatures
    Wang, Dianchao
    Noguchi, Takafumi
    Nozaki, Takahito
    Higo, Yasuhide
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 272
  • [49] Radon exhalation from cement-based materials under accelerated carbonation
    Rong Yang
    Jie Wang
    Xiaowen Zhang
    Jie Li
    Mianbiao Chen
    Environmental Science and Pollution Research, 2023, 30 : 50610 - 50619
  • [50] Modification of cement-based materials with nanoparticles
    Kawashima, Shiho
    Hou, Pengkun
    Corr, David J.
    Shah, Surendra P.
    CEMENT & CONCRETE COMPOSITES, 2013, 36 : 8 - 15