Unification of Gravity and Internal Interactions

被引:4
|
作者
Konitopoulos, Spyros [1 ]
Roumelioti, Danai [2 ]
Zoupanos, George [2 ,3 ,4 ,5 ]
机构
[1] NCSR Demokritos, Inst Nucl & Particle Phys, Patr Gregoriou E & 27 Neapoleos Str, Athens 15341, Agia Paraskevi, Greece
[2] Natl Tech Univ Athens, Phys Dept, 9 Iroon Polytech St, Athens 15780, Zografou, Greece
[3] CERN, Theory Dept, CH-1211 Geneva, Switzerland
[4] Max Planck Inst Phys & Astrophys, 6 Fohringer Ring, D-80805 Munich, Germany
[5] Heidelberg Univ, Inst Theoret Phys, 16 Philosophenweg, D-69120 Heidelberg, Germany
来源
关键词
gauge gravity; grand unification; gravity as gauge theory; SO10 grand unified theory; unification; DIMENSIONAL REDUCTION; RENORMALIZATION; SYMMETRIES;
D O I
10.1002/prop.202300226
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the gauge theoretic approach of gravity, general relativity is described by gauging the symmetry of the tangent manifold in four dimensions. Usually the dimension of the tangent space is considered to be equal to the dimension of the curved manifold. However, the tangent group of a manifold of dimension d is not necessarily SOd. It has been suggested earlier that by gauging an enlarged symmetry of the tangent space in four dimensions one could unify gravity with internal interactions. Here, such a unified model is considered by gauging the SO(1,17) as the extended Lorentz group overcoming in this way some difficulties of the previous attempts of similar unification and eventually obtained the SO10 GUT, supplemented by an SU2 x SU2 global symmetry.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Induced gravity II: grand unification
    Martin B. Einhorn
    D.R. Timothy Jones
    Journal of High Energy Physics, 2016
  • [32] GAUGE: the GrAnd Unification and Gravity Explorer
    G. Amelino-Camelia
    K. Aplin
    M. Arndt
    J. D. Barrow
    R. J. Bingham
    C. Borde
    P. Bouyer
    M. Caldwell
    A. M. Cruise
    T. Damour
    P. D’Arrigo
    H. Dittus
    W. Ertmer
    B. Foulon
    P. Gill
    G. D. Hammond
    J. Hough
    C. Jentsch
    U. Johann
    P. Jetzer
    H. Klein
    A. Lambrecht
    B. Lamine
    C. Lämmerzahl
    N. Lockerbie
    F. Loeffler
    J. T. Mendonca
    J. Mester
    W.-T. Ni
    C. Pegrum
    A. Peters
    E. Rasel
    S. Reynaud
    D. Shaul
    T. J. Sumner
    S. Theil
    C. Torrie
    P. Touboul
    C. Trenkel
    S. Vitale
    W. Vodel
    C. Wang
    H. Ward
    A. Woodgate
    Experimental Astronomy, 2009, 23 : 549 - 572
  • [33] Can gravity be included in grand unification?
    Rowlands, P
    Cullerne, JP
    GRAVITATION AND COSMOLOGY: FROM THE HUBBLE RADIUS TO THE PLANCK SCALE, 2002, 126 : 279 - 286
  • [34] UNIFICATION OF GRAVITY AND ELECTROMAGNETISM IN THE PLASMA UNIVERSE
    BRANDENBURG, JE
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1992, 20 (06) : 944 - 957
  • [35] Strings, gravity, and the quest for unification - Foreword
    Gross, D
    COMPTES RENDUS PHYSIQUE, 2005, 6 (02) : 161 - 162
  • [36] Unification of electrodynamics and gravity from START
    Keller, Jaime
    Annales de la Fondation Louis de Broglie, 2002, 27 (03): : 359 - 410
  • [37] UNIFICATION AND HIGHER-DERIVATIVE GRAVITY
    ROSS, DK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16): : 3879 - 3884
  • [38] The geometrical unification of gravity with its source
    Paul S. Wesson
    General Relativity and Gravitation, 2008, 40 : 1353 - 1365
  • [39] A Geometric Framework for Unification of Gravity and Electromagnetism
    Ramandi, Gh. Fasihi
    GRAVITATION & COSMOLOGY, 2021, 27 (02): : 113 - 119