Evaluation of dowel bearing strength of fungal-decayed cross-laminated timber

被引:1
|
作者
Udele, Kenneth Emamoke [1 ,2 ]
Morrell, Jeffrey J. [1 ]
Newton, Anthony [1 ]
Sinha, Arijit [1 ]
机构
[1] Oregon State Univ, Wood Sci & Engn, Corvallis, OR USA
[2] Oregon State Univ, Wood Sci & Engn, 119 Richardson Hall, Corvallis, OR 97331 USA
关键词
Dowel bearing strength; connection capacity; CLT; decay fungi; brown rot; HYGROTHERMAL PERFORMANCE; WALL ASSEMBLIES; WOOD; DEGRADATION; DURABILITY;
D O I
10.1080/17480272.2023.2269392
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Dowel bearing strength of three cross-laminated timber (CLT) species (Douglas-fir, Norway spruce, spruce pine fir) were periodically assessed through 40 weeks of exposure to two brown rot fungi species (Gloeophyllum trabeum and Rhodonia placenta). Time-dependent regression models were developed to describe the relationship between level of fungal exposure and dowel bearing strength of CLT. Obtained dowel bearing strength values were used to predict the capacity of floor-to-wall CLT connection systems. Predicted strength values were compared with capacity of actual connection systems which were subjected to similar biodeterioration treatments. Significant reductions in the dowel bearing strength of CLT were observed 30 weeks after fungal inoculation. Similar patterns of degradation were observed for both fungi in all three CLT species, but R. placenta was slightly more aggressive than G. trabeum, causing a 16.2 MPa reduction in dowel bearing strength of Douglas-fir after 40 weeks of exposure. Connection capacities estimated using National Design Specification yield models for dowel type fasteners and the dowel bearing strength of fungal-damaged CLT were consistent with observed properties and were within 85% of actual capacity of connections tested, especially in early stages of decay.
引用
收藏
页码:564 / 572
页数:9
相关论文
共 50 条
  • [31] Influence of Adhesive and Layer Composition on Compressive Strength of Mixed Cross-laminated Timber
    Lee, In-Hwan
    Kim, Keon-Ho
    BIORESOURCES, 2021, 16 (04) : 7461 - 7473
  • [32] Evaluation of the Out-of-Plane Shear Properties of Cross-Laminated Timber
    Yang, Yin
    Cau, Xiaoyan
    Wang, Zhiqiang
    Liang, Zhijun
    Zhou, Jianhui
    JOURNAL OF RENEWABLE MATERIALS, 2019, 7 (10) : 957 - 965
  • [33] Behavior and Strength Characteristics of Cross-Laminated Timber Mats: Experimental and Numerical Study
    Mahamid, Mustafa
    Brindley, Tom
    Triandafilou, Nicholas
    Domagala, Slawomir
    STRUCTURES CONGRESS 2017: BUSINESS, PROFESSIONAL PRACTICE, EDUCATION, RESEARCH, AND DISASTER MANAGEMENT, 2017, : 254 - 268
  • [34] Block Shear Strength and Delamination of Cross-Laminated Timber Fabricated with Japanese Larch
    Gong, Yingchun
    Wu, Guofang
    Ren, Haiqing
    BIORESOURCES, 2016, 11 (04): : 10240 - 10250
  • [35] Outlook for Cross-Laminated Timber in the United States
    Mallo, Maria Fernanda Laguarda (lagua006@umn.edu), 1600, North Carolina State University (09):
  • [36] Ballistic performance of Cross-laminated Timber (CLT)
    Sanborn, K.
    Gentry, T. R.
    Koch, Z.
    Valkenburg, A.
    Conley, C.
    Stewart, L. K.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2019, 128 : 11 - 23
  • [37] Investigation of the strength performance of anchoring connections for Japanese cedar cross-laminated timber
    Yeh, Min-Chyuan
    Lin, Yu-Li
    Wu, Zong-Syuan
    Chen, Bo-Ruei
    Taiwan Journal of Forest Science, 2020, 35 (01): : 37 - 60
  • [38] Influence of Lamination Aspect Ratios and Test Methods on Rolling Shear Strength Evaluation of Cross-Laminated Timber
    Li, Minghao
    Dong, Wenchen
    Lim, Hyungsuk
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2019, 31 (12)
  • [39] Changing Failure Modes of Cross-Laminated Timber
    Emberley, Richard
    Nicolaidis, Alexander
    Fernando, Dilum
    Torero, Jose L.
    STRUCTURES IN FIRE, 2016, : 643 - 649
  • [40] Shear Stress and Interlaminar Shear Strength Tests of Cross-laminated Timber Beams
    Lu, Yao
    Xie, Wenbo
    Wang, Zheng
    Gao, Zizhen
    BIORESOURCES, 2018, 13 (03): : 5343 - 5359