Use of long short-term memory network (LSTM) in the reconstruction of missing water level data in the River Seine

被引:2
|
作者
Janbain, Imad [1 ,2 ]
Deloffre, Julien [1 ]
Jardani, A. [1 ]
Vu, Minh Tan [1 ]
Massei, Nicolas [1 ]
机构
[1] Univ Caen Normandie, Univ Rouen Normandie, CNRS, UMR 6143,M2C,GeoDeepLearning Consortium, Rouen, France
[2] Univ Caen Normandie, Univ Rouen Normandie, CNRS, UMR 6143,M2C,GeoDeepLearning Consortium, 134 Ave Mont Riboudet, F-76000 Rouen, France
关键词
missing data imputation; hydrology; water level; River Seine; long short-term memory (LSTM); deep learning; machine learning; TIME-SERIES; IMPUTATION; MODELS; PREDICTION; ANN;
D O I
10.1080/02626667.2023.2221791
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
This paper aims to fill in the missing time series of hourly surface water levels of some stations installed along the River Seine, using the long short-term memory (LSTM) algorithm. In our study, only the water level data from the same station, containing many missing parts, were used as input and output variables, in contrast to other works where several features are available to take advantage of e.g. other station data/physical variables. A sensitive analysis is presented on both the network properties and how the input and output data are reentered to better determine the appropriate strategy. Numerous scenarios are presented, each an updated version of the previous one. Ultimately, the final version of the model can impute missing values of up to one year of hourly data with great flexibility (one-year Root-Mean-Square Error (RMSE) = 0.14 m) regardless of the location of the missing gaps in the series or their size.
引用
收藏
页码:1372 / 1390
页数:19
相关论文
共 50 条
  • [31] Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) Power Forecasting
    Alsabban, Maha S.
    Salem, Nema
    Malik, Hebatullah M.
    APPEEC 2021: 2021 13TH IEEE PES ASIA PACIFIC POWER & ENERGY ENGINEERING CONFERENCE (APPEEC), 2021,
  • [32] HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
    Kratzert, Frederik
    Gauch, Martin
    Klotz, Daniel
    Nearing, Grey
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (17) : 4187 - 4201
  • [33] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [34] Long Short-Term Memory Recurrent Neural Network for Tidal Level Forecasting
    Yang, Cheng-Hong
    Wu, Chih-Hsien
    Hsieh, Chih-Min
    IEEE ACCESS, 2020, 8 (08) : 159389 - 159401
  • [35] UTILIZING LONG SHORT-TERM MEMORY (LSTM) NETWORKS FOR RIVER FLOW PREDICTION IN THE BRAZILIAN PANTANAL BASIN
    Descovi, C. S.
    Zuffo, A. C.
    Mohammadizadeh, S. M.
    Murillo-Bermudez, L. F.
    Sierra, D. A.
    HOLOS, 2023, 39 (05)
  • [36] Niederschlags-Abfluss-Modellierung mit Long Short-Term Memory (LSTM)Rainfall-Runoff modeling with Long Short-Term Memory Networks (LSTM)—an overview
    Frederik Kratzert
    Martin Gauch
    Grey Nearing
    Sepp Hochreiter
    Daniel Klotz
    Österreichische Wasser- und Abfallwirtschaft, 2021, 73 (7-8) : 270 - 280
  • [37] Water quality ensemble prediction model for the urban water reservoir based on the hybrid long short-term memory (LSTM) network analysis
    He, Kai
    Liu, Yu
    Yuan, Jinlong
    He, Zhidong
    Yin, Qidong
    Xu, Dongjian
    Zhao, Xinfeng
    Hu, Maochuan
    Lu, Haoxian
    AQUA-WATER INFRASTRUCTURE ECOSYSTEMS AND SOCIETY, 2024, 73 (08) : 1621 - 1642
  • [38] A short-term water demand forecasting model using multivariate long short-term memory with meteorological data
    Zanfei, Ariele
    Brentan, Bruno Melo
    Menapace, Andrea
    Righetti, Maurizio
    JOURNAL OF HYDROINFORMATICS, 2022, 24 (05) : 1053 - 1065
  • [39] Using a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to Classify Network Attacks
    Muhuri, Pramita Sree
    Chatterjee, Prosenjit
    Yuan, Xiaohong
    Roy, Kaushik
    Esterline, Albert
    INFORMATION, 2020, 11 (05)
  • [40] Using a long short-term memory recurrent neural network (LSTM-RNN) to classify network attacks
    Muhuri P.S.
    Chatterjee P.
    Yuan X.
    Roy K.
    Esterline A.
    Information (Switzerland), 2020, 11 (05):