Partial organic fertilizer substitution promotes soil multifunctionality by increasing microbial community diversity and complexity

被引:30
|
作者
Tang, Quan [1 ,2 ,3 ]
Xia, Yongqiu [1 ]
Ti, Chaopu [1 ]
Shan, Jun [1 ]
Zhou, Wei [1 ]
LI, Chenglin [1 ,2 ]
Yan, Xing [1 ,2 ]
Yan, Xiaoyuan [1 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Yangzhou Univ, Coll Environm Sci & Engn, Yangzhou 225127, Peoples R China
基金
中国国家自然科学基金;
关键词
bacterial and fungal diversity; biogeochemical cycling; climate regulation; enzyme activity; microbial network; primary production; soil function; ECOSYSTEM CARBON BUDGET; AGGREGATE STABILITY; VITAMIN-C; BIODIVERSITY; NITROGEN; YIELD; IDENTIFICATION; OXIDATION; SERVICES; SYSTEMS;
D O I
10.1016/j.pedsph.2022.06.044
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Partial substitution of synthetic nitrogen (N) with organic fertilizers (PSOF) is of great significance in improving soil ecosystem functions in systems that have deteriorated due to the excessive application of chemical N fertilizer. However, existing studies typically focus on individual soil functions, neglecting the fact that multiple functions occur simultaneously. It remains unclear how PSOF influences multiple soil functions and whether these impacts are related to soil microbial communities. Here, we examined the impacts of partial substitutions (25%-50%) of chemical N fertilizer with organic form (pig manure or municipal sludge) in a vegetable field on soil multifunctionality, by measuring a range of soil functions involving primary production (vegetable yield and quality), nutrient cycling (soil enzyme activities, ammonia volatilization, N leaching, and N runoff), and climate regulation (soil organic carbon sequestration and nitrous oxide emission). We observed that PSOF improved soil multifunctionality, with a 50% substitution of chemical N fertilizer with pig manure being the best management practice; the result was strongly related to the diversities and network complexities of bacteria and fungi. Random forest analysis further revealed that soil multifunctionality was best explained by the bacterial-fungal network complexity, followed by available phosphorus level and bacterial diversity. The PSOF also shifted the composition of bacterial and fungal communities, with increased relative abundances of dominant bacteria phyla, such as Bacteroidetes, Gemmatimonadetes, and Myxococcota, and fungal phyla, such as Basidiomycota and Olpidiomycota. The observed increases in soil multifunctionality were consistent with significant increases in the relative abundances of keystone taxa such as Blastocladiomycota, Chaetomiaceae, and Nocardiopsaceae. Together, these findings indicate that PSOF can enhance interactions within and among microbial communities and that such practices have the potential to improve soil ecosystem multifunctionality and contribute to the development of sustainable agriculture.
引用
收藏
页码:407 / 420
页数:14
相关论文
共 50 条
  • [21] Biochar and organic fertilizer applications enhance soil functional microbial abundance and agroecosystem multifunctionality
    Hu, Wang
    Zhang, Yuping
    Rong, Xiangmin
    Zhou, Xuan
    Fei, Jiangchi
    Peng, Jianwei
    Luo, Gongwen
    BIOCHAR, 2024, 6 (01)
  • [22] Microbial diversity and the abundance of keystone species drive the response of soil multifunctionality to organic substitution and biochar amendment in a tea plantation
    Han, Zhaoqiang
    Xu, Pinshang
    Li, Zhutao
    Lin, Haiyan
    Zhu, Chen
    Wang, Jinyang
    Zou, Jianwen
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2022, 14 (04): : 481 - 495
  • [23] Responses of soil microbial diversity, network complexity and multifunctionality to environments changes in volcanic ecosystems
    Chen, Jin
    Xu, Daolong
    Xiao, Qingchen
    Zheng, Yaxin
    Liu, Haijing
    Li, Xiaoyu
    Chao, Lumeng
    Li, Fansheng
    Bao, Yuying
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (05):
  • [24] Compared with soil fungal diversity and microbial network complexity, soil bacterial diversity drives soil multifunctionality during the restoration process
    Gong, Xiaoqian
    Jarvie, Scott
    Wen, Jia
    Su, Nier
    Yan, Yongzhi
    Liu, Qingfu
    Zhang, Qing
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 354
  • [25] Effects of Different Proportions of Organic Fertilizer in Place of Chemical Fertilizer on Microbial Diversity and Community Structure of Pineapple Rhizosphere Soil
    Chen, Wanying
    Zhang, Xiaobo
    Hu, Yinghong
    Zhao, Yan
    AGRONOMY-BASEL, 2024, 14 (01):
  • [26] Long-term mineral combined with organic fertilizer supports crop production by increasing microbial community complexity
    Zhang, Zhiming
    He, Peng
    Hao, Xiangxiang
    Li, Lu-Jun
    APPLIED SOIL ECOLOGY, 2023, 188
  • [27] Response of Soil Multifunctionality to Reduced Microbial Diversity
    Chen G.-X.
    Wu C.-F.
    Ge T.-D.
    Chen J.-P.
    Deng Y.-W.
    Huanjing Kexue/Environmental Science, 2022, 43 (11): : 5274 - 5285
  • [28] Soil microbial characteristics and yield response to partial substitution of chemical fertilizer with organic amendments in greenhouse vegetable production
    RONG Qin-lei
    LI Ruo-nan
    HUANG Shao-wen
    TANG Ji-wei
    ZHANG Yan-cai
    WANG Li-ying
    Journal of Integrative Agriculture, 2018, 17 (06) : 1432 - 1444
  • [29] Soil microbial characteristics and yield response to partial substitution of chemical fertilizer with organic amendments in greenhouse vegetable production
    Rong Qin-lei
    Li Ruo-nan
    Huang Shao-wen
    Tang Ji-wei
    Zhang Yan-cai
    Wang Li-ying
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2018, 17 (06) : 1432 - 1444
  • [30] Organic fertilizer substitution over six years improves the productivity of garlic, bacterial diversity, and microbial communities network complexity
    Ma, Yingjun
    Shen, Shizhou
    Wan, Chen
    Wang, Siqi
    Yang, Fengxia
    Zhang, Keqiang
    Gao, Wenxuan
    APPLIED SOIL ECOLOGY, 2023, 182