Partial organic fertilizer substitution promotes soil multifunctionality by increasing microbial community diversity and complexity

被引:30
|
作者
Tang, Quan [1 ,2 ,3 ]
Xia, Yongqiu [1 ]
Ti, Chaopu [1 ]
Shan, Jun [1 ]
Zhou, Wei [1 ]
LI, Chenglin [1 ,2 ]
Yan, Xing [1 ,2 ]
Yan, Xiaoyuan [1 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Yangzhou Univ, Coll Environm Sci & Engn, Yangzhou 225127, Peoples R China
基金
中国国家自然科学基金;
关键词
bacterial and fungal diversity; biogeochemical cycling; climate regulation; enzyme activity; microbial network; primary production; soil function; ECOSYSTEM CARBON BUDGET; AGGREGATE STABILITY; VITAMIN-C; BIODIVERSITY; NITROGEN; YIELD; IDENTIFICATION; OXIDATION; SERVICES; SYSTEMS;
D O I
10.1016/j.pedsph.2022.06.044
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Partial substitution of synthetic nitrogen (N) with organic fertilizers (PSOF) is of great significance in improving soil ecosystem functions in systems that have deteriorated due to the excessive application of chemical N fertilizer. However, existing studies typically focus on individual soil functions, neglecting the fact that multiple functions occur simultaneously. It remains unclear how PSOF influences multiple soil functions and whether these impacts are related to soil microbial communities. Here, we examined the impacts of partial substitutions (25%-50%) of chemical N fertilizer with organic form (pig manure or municipal sludge) in a vegetable field on soil multifunctionality, by measuring a range of soil functions involving primary production (vegetable yield and quality), nutrient cycling (soil enzyme activities, ammonia volatilization, N leaching, and N runoff), and climate regulation (soil organic carbon sequestration and nitrous oxide emission). We observed that PSOF improved soil multifunctionality, with a 50% substitution of chemical N fertilizer with pig manure being the best management practice; the result was strongly related to the diversities and network complexities of bacteria and fungi. Random forest analysis further revealed that soil multifunctionality was best explained by the bacterial-fungal network complexity, followed by available phosphorus level and bacterial diversity. The PSOF also shifted the composition of bacterial and fungal communities, with increased relative abundances of dominant bacteria phyla, such as Bacteroidetes, Gemmatimonadetes, and Myxococcota, and fungal phyla, such as Basidiomycota and Olpidiomycota. The observed increases in soil multifunctionality were consistent with significant increases in the relative abundances of keystone taxa such as Blastocladiomycota, Chaetomiaceae, and Nocardiopsaceae. Together, these findings indicate that PSOF can enhance interactions within and among microbial communities and that such practices have the potential to improve soil ecosystem multifunctionality and contribute to the development of sustainable agriculture.
引用
收藏
页码:407 / 420
页数:14
相关论文
共 50 条
  • [1] Partial organic fertilizer substitution promotes soil multifunctionality by increasing microbial community diversity and complexity
    Quan TANG
    Yongqiu XIA
    Chaopu TI
    Jun SHAN
    Wei ZHOU
    Chenglin LI
    Xing YAN
    Xiaoyuan YAN
    Pedosphere, 2023, (03) : 407 - 420
  • [2] Partial organic fertilizer substitution promotes soil multifunctionality by increasing microbial community diversity and complexity
    Quan TANG
    Yongqiu XIA
    Chaopu TI
    Jun SHAN
    Wei ZHOU
    Chenglin LI
    Xing YAN
    Xiaoyuan YAN
    Pedosphere, 2023, 33 (03) : 407 - 420
  • [3] Organic management improved the multifunctionality in recolonization soil by increasing microbial diversity and function
    Yu, Taobing
    Yang, Ruoqi
    Jie, Xintian
    Lian, Tengxiang
    Zang, Huadong
    Zeng, Zhaohai
    Yang, Yadong
    FUNCTIONAL ECOLOGY, 2024, 38 (10) : 2207 - 2219
  • [4] Partial substitution of chemical fertilizer with organic fertilizer and slow-release fertilizer benefits soil microbial diversity and pineapple fruit yield in the tropics
    Jin, Xin
    Cai, Jinwen
    Yang, Shuyun
    Li, Shoupeng
    Shao, Xujie
    Fu, Chunmin
    Li, Changzhen
    Deng, Yan
    Huang, Jiaquan
    Ruan, Yunze
    Li, Changjiang
    APPLIED SOIL ECOLOGY, 2023, 189
  • [5] The effects of mineral fertilizer and organic manure on soil microbial community and diversity
    Wenhui Zhong
    Ting Gu
    Wei Wang
    Bin Zhang
    Xiangui Lin
    Qianru Huang
    Weishou Shen
    Plant and Soil, 2010, 326 : 511 - 522
  • [6] The effects of mineral fertilizer and organic manure on soil microbial community and diversity
    Zhong, Wenhui
    Gu, Ting
    Wang, Wei
    Zhang, Bin
    Lin, Xiangui
    Huang, Qianru
    Shen, Weishou
    PLANT AND SOIL, 2010, 326 (1-2) : 511 - 522
  • [7] The effects of mineral fertilizer and organic manure on soil microbial community and diversity
    Wenhui Zhong
    Ting Gu
    Wei Wang
    Bin Zhang
    Xiangui Lin
    Qianru Huang
    Weishou Shen
    Plant and Soil, 2010, 326 : 523 - 523
  • [8] Erosion reduces soil microbial diversity, network complexity and multifunctionality
    Qiu, Liping
    Zhang, Qian
    Zhu, Hansong
    Reich, Peter B.
    Banerjee, Samiran
    van der Heijden, Marcel G. A.
    Sadowsky, Michael J.
    Ishii, Satoshi
    Jia, Xiaoxu
    Shao, Mingan
    Liu, Baoyuan
    Jiao, Huan
    Li, Haiqiang
    Wei, Xiaorong
    ISME JOURNAL, 2021, 15 (08): : 2474 - 2489
  • [9] Erosion reduces soil microbial diversity, network complexity and multifunctionality
    Liping Qiu
    Qian Zhang
    Hansong Zhu
    Peter B. Reich
    Samiran Banerjee
    Marcel G. A. van der Heijden
    Michael J. Sadowsky
    Satoshi Ishii
    Xiaoxu Jia
    Mingan Shao
    Baoyuan Liu
    Huan Jiao
    Haiqiang Li
    Xiaorong Wei
    The ISME Journal, 2021, 15 : 2474 - 2489
  • [10] Organic substitution contrasting direct fertilizer reduction increases wheat productivity, soil quality, microbial diversity and network complexity
    He, Hao
    Peng, Mengwen
    Hou, Zhenan
    Li, Junhua
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2024, 36