Deep Learning for the Classification of Cassava Leaf Diseases in Unbalanced Field Data Set

被引:3
|
作者
Paiva-Peredo, Ernesto [1 ]
机构
[1] Univ Tecnol Peru, Lima, Peru
关键词
Deep learning; Plant disease; Convolutional neural networks; Leaf disease; Classification; PLANT-DISEASE; MANIHOT-ESCULENTA; IDENTIFICATION; CHALLENGES;
D O I
10.1007/978-3-031-28183-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cassava is one of the main sources of carbohydrates in the world. However, the diagnosis of diseases in cassava crops is laborious, time-consuming and requires specialised personnel. In addition, very little research is available on images of cassava leaves taken with mobile phones and under field conditions. Therefore, the study designs deep learning models for the detection of diseases in cassava leaves from photos taken with mobile phones in the field. This study used a dataset of 21'397 images of cassava bacterial blight, cassava brown streak disease, cassava green mottle and cassava mosaic disease from a Kaggle competition. Twelve CNN models have been evaluated by applying transfer learning and data augmentation. Each of the models was trained with uniform samples and class-weighted samples. The results showed that the use of weighted samples reduced F1 score and accuracy in all cases. Furthermore, the DenseNet169 model was outstanding with an accuracy and F1 score of 74.77% and 0.59 respectively. Finally, the causes that hinder correct classification have been identified. The results reveal that it is still necessary to work on creating a balanced and refined database.
引用
收藏
页码:101 / 114
页数:14
相关论文
共 50 条
  • [21] GLDICCNN Model: Groundnut Leaf Diseases Identification and Classification for Multiclass Classification Using Deep Learning
    Anbumozhi, Anna
    Shanthini, A.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (07) : 812 - 821
  • [22] Feature Extraction and Classification of Plant Leaf Diseases Using Deep Learning Techniques
    Anitha, K.
    Srinivasan, S.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 233 - 247
  • [23] Feature Extraction and Classification of Plant Leaf Diseases Using Deep Learning Techniques
    Anitha, K.
    Srinivasan, S.
    Computers, Materials and Continua, 2022, 73 (01): : 233 - 247
  • [24] Recognition of Plant Diseases by Leaf Image Classification Using Deep Learning Approach
    Goy, Sin Ying
    Chong, Yen Fook
    Teoh, Theng Kah Kelvin
    Lim, Chee Chin
    Vijean, Vikneswaran
    INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, ICOBE 2021, 2023, 2562
  • [25] An Enhanced Identification and Classification Algorithm for Plant Leaf Diseases Based on Deep Learning
    Arasakumaran, Umamageswari
    Johnson, Shiny Duela
    Sara, Dioline
    Kothandaraman, Raja
    TRAITEMENT DU SIGNAL, 2022, 39 (03) : 1013 - 1018
  • [26] Classification of Corn Diseases from Leaf Images Using Deep Transfer Learning
    Fraiwan, Mohammad
    Faouri, Esraa
    Khasawneh, Natheer
    PLANTS-BASEL, 2022, 11 (20):
  • [27] Deep Gaussian convolutional neural network model in classification of cassava diseases using spectral data
    Emmanuel Ahishakiye
    Waweru Mwangi
    Petronilla Muriithi
    Fredrick Kanobe
    Godliver Owomugisha
    Danison Taremwa
    Lenard Nkalubo
    The Journal of Supercomputing, 2024, 80 : 463 - 485
  • [28] Deep Gaussian convolutional neural network model in classification of cassava diseases using spectral data
    Ahishakiye, Emmanuel
    Mwangi, Waweru
    Muriithi, Petronilla
    Kanobe, Fredrick
    Owomugisha, Godliver
    Taremwa, Danison
    Nkalubo, Lenard
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (01): : 463 - 485
  • [30] An Improved Active Learning in Unbalanced Data Classification
    Park, Woon Jeung
    SECURE AND TRUST COMPUTING, DATA MANAGEMENT, AND APPLICATIONS, 2011, 187 : 84 - 93