Directional neutrino searches for Galactic Center dark matter at large underground LArTPCs

被引:0
|
作者
Buckley, Matthew R. [1 ]
Mastbaum, Andrew [1 ]
Mohlabeng, Gopolang [2 ,3 ,4 ,5 ,6 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[2] Brookhaven Natl Lab, Phys Dept, Upton, NY 11973 USA
[3] Queens Univ, McDonald Inst, Kingston, ON K7L 3N6, Canada
[4] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada
[5] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[6] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
HIGH-ENERGY; ASTROPY; SOLAR; FLUX;
D O I
10.1103/PhysRevD.107.092006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the sensitivity of a large underground Liquid Argon Time Projection Chamber (LArTPC)based neutrino detector to dark matter in the Galactic Center annihilating into neutrinos. Such a detector could have the ability to resolve the direction of the electron in a neutrino scattering event and thus to infer information about the source direction for individual neutrino events. We consider the improvements on the expected experimental sensitivity that this directional information would provide. Even without directional information, we find a DUNE-like LArTPC detector is capable of setting limits on dark matter annihilation to neutrinos for dark matter masses above 30 MeV that are competitive with or exceed current experimental reach. While currently-demonstrated angular resolution for low-energy electrons is insufficient to allow any significant increase in sensitivity, these techniques could benefit from improvements to algorithms and the additional spatial information provided by novel 3D charge imaging approaches. We consider the impact of such enhancements to the resolution for electron directionality and find that, where electron-scattering events can be distinguished from charged-current neutrino interactions, limits on dark matter annihilation in the mass range where solar neutrino backgrounds dominate (less than or similar to 15 MeV) can be significantly improved using directional information, and would be competitive with existing limits using 40 kton x year of exposure.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Cold dark matter searches at the Canfranc underground laboratory
    Cebrián, S
    García, E
    Gonzalez, D
    Irastorza, IG
    Morales, A
    Morales, J
    Ortiz, A
    Peruzzi, A
    Puimedon, J
    Sarsa, ML
    Scopel, S
    Villar, JA
    NEW JOURNAL OF PHYSICS, 2000, 2 : 131 - 1320
  • [32] Gamma-ray and neutrino fluxes from Heavy Dark Matter in the Galactic Center
    Gammaldi, V.
    Cembranos, J. A. R.
    de la Cruz-Dombriz, A.
    Lineros, R. A.
    Maroto, A. L.
    13TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, TAUP 2013, 2015, 61 : 694 - 703
  • [33] Dark matter profile in the Galactic center
    Gnedin, OY
    Primack, JR
    PHYSICAL REVIEW LETTERS, 2004, 93 (06) : 061302 - 1
  • [34] Search for Dark Matter with Fermi Large Area Telescope: The Galactic Center
    Vitale, Vincenzo
    Morselli, Aldo
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 630 (01): : 147 - 150
  • [35] Exciting dark matter in the Galactic Center
    Chen, Fang
    Cline, James M.
    Fradette, Anthony
    Frey, Andrew R.
    Rabideau, Charles
    PHYSICAL REVIEW D, 2010, 81 (04):
  • [36] Dark matter concentration in the Galactic center
    Tsiklauri, D
    Viollier, RD
    ASTROPHYSICAL JOURNAL, 1998, 500 (02): : 591 - 595
  • [37] Relativistic dark matter at the galactic center
    Amin, Mustafa A.
    Wizansky, Tommer
    PHYSICAL REVIEW D, 2008, 77 (12):
  • [38] Dark matter dynamics in the galactic center
    Vasiliev, Eugene
    Zelnikov, Maxim
    PHYSICAL REVIEW D, 2008, 78 (08):
  • [39] Dark matter annihilation at the galactic center
    Gondolo, P
    Silk, J
    PHYSICAL REVIEW LETTERS, 1999, 83 (09) : 1719 - 1722
  • [40] Sensitivity of the Baikal-GVD neutrino telescope to neutrino emission toward the center of the galactic dark matter halo
    A. D. Avrorin
    A. V. Avrorin
    V. M. Aynutdinov
    R. Bannasch
    I. A. Belolaptikov
    D. Yu. Bogorodsky
    V. B. Brudanin
    N. M. Budnev
    I. A. Danilchenko
    S. V. Demidov
    G. V. Domogatsky
    A. A. Doroshenko
    A. N. Dyachok
    Zh. -A. M. Dzhilkibaev
    S. V. Fialkovsky
    A. R. Gafarov
    O. N. Gaponenko
    K. V. Golubkov
    T. I. Gress
    Z. Honz
    K. G. Kebkal
    O. G. Kebkal
    K. V. Konischev
    E. N. Konstantinov
    A. V. Korobchenko
    A. P. Koshechkin
    F. K. Koshel
    A. V. Kozhin
    V. F. Kulepov
    D. A. Kuleshov
    V. I. Ljashuk
    M. B. Milenin
    R. A. Mirgazov
    E. R. Osipova
    A. I. Panfilov
    L. V. Pan’kov
    A. A. Perevalov
    E. N. Pliskovsky
    M. I. Rozanov
    V. Yu. Rubtzov
    E. V. Rjabov
    B. A. Shaybonov
    A. A. Sheifler
    A. V. Skurihin
    A. A. Smagina
    O. V. Suvorova
    B. A. Tarashansky
    S. A. Yakovlev
    A. V. Zagorodnikov
    V. A. Zhukov
    JETP Letters, 2015, 101 : 289 - 294