Human gesture recognition of dynamic skeleton using graph convolutional networks

被引:1
|
作者
Liang, Wuyan [1 ]
Xu, Xiaolong [2 ]
Xiao, Fu [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
intelligent vision computing; graph convolutional networks; spatiotemporal correlations; dynamic gesture recognition; SIGN-LANGUAGE RECOGNITION;
D O I
10.1117/1.JEI.32.2.021402
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this era, intelligent vision computing has always been a fascinating field. With the rapid development in computer vision, dynamic gesture-based recognition systems have attracted significant attention. However, automatically recognizing skeleton-based human gestures in the form of sign language is complex and challenging. Most existing methods consider skeleton-based human gesture recognition as a standard video recognition problem, without considering the rich structure information among both joints and gesture frames. Graph convolutional networks (GCNs) are a promising way to leverage structure information to learn structure representations. However, adopting GCNs to tackle such gesture sequences both in spatial and temporal spaces is challenging as graph could be highly nonlinear and complex. To overcome this issue, we propose the spatiotemporal GCNs model to leverage the powerful spatiotemporal correlations to adaptively construct spatiotemporal graphs, called Aegles. Our method could dynamically attend to relatively significant spatiotemporal joints and construct different graphs, including spatial, temporal, and spatiotemporal graph, and well capturing the structure information in gesture sequences. Besides, we introduce the second-order information of the gesture skeleton data, i.e., the length and orientation of bones, to improve the representation of human hands and fingers. In addition, with the public sign language datasets, we use OpenPose technology to extract human gesture skeleton and obtain human skeleton video, building four skeleton-based sign language recognition datasets. Experimental results show that this Aegles outperforms the state-of-the-art ones and that the spatiotemporal correlations effectively boost the performance of human gesture recognition.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Hand Gesture Recognition Using Deep Convolutional Neural Networks
    Strezoski, Gjorgji
    Stojanovski, Dario
    Dimitrovski, Ivica
    Madjarov, Gjorgji
    ICT INNOVATIONS 2016: COGNITIVE FUNCTIONS AND NEXT GENERATION ICT SYSTEMS, 2018, 665 : 49 - 58
  • [42] Graph Convolutional Networks for Skeleton-Based Action Recognition with LSTM using Tool-Information
    Seo, Young Min
    Choi, Yong Suk
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 986 - 993
  • [43] Skeleton Based Dynamic Hand Gesture Recognition using LSTM and CNN
    Ikram, Aaahm
    Liu, Yue
    PROCEEDINGS OF 2020 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MACHINE VISION AND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND MACHINE LEARNING, IPMV 2020, 2020, : 63 - 68
  • [44] Normalize d e dge convolutional networks for skeleton-based hand gesture recognition
    Guo, Fangtai
    He, Zaixing
    Zhang, Shuyou
    Zhao, Xinyue
    Fang, Jinhui
    Tan, Jianrong
    PATTERN RECOGNITION, 2021, 118
  • [45] On the spatial attention in spatio-temporal graph convolutional networks for skeleton-based human action recognition
    Heidari, Negar
    Iosifidis, Alexandros
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [46] Non-Uniform Motion Aggregation with Graph Convolutional Networks for Skeleton-Based Human Action Recognition
    Liang, Chengwu
    Yang, Jie
    Du, Ruolin
    Hu, Wei
    Tie, Yun
    ELECTRONICS, 2023, 12 (21)
  • [47] On the spatial attention in spatio-temporal graph convolutional networks for skeleton-based human action recognition
    Heidari, Negar
    Iosifidis, Alexandros
    Proceedings of the International Joint Conference on Neural Networks, 2021, 2021-July
  • [48] Pyramidal Graph Convolutional Network for Skeleton-Based Human Action Recognition
    Li, Fanjia
    Zhu, Aichun
    Liu, Zhongyu
    Huo, Yu
    Xu, Yonggang
    Hua, Gang
    IEEE SENSORS JOURNAL, 2021, 21 (14) : 16183 - 16191
  • [49] Dual-domain graph convolutional networks for skeleton-based action recognition
    Chen, Shuo
    Xu, Ke
    Mi, Zhongjie
    Jiang, Xinghao
    Sun, Tanfeng
    MACHINE LEARNING, 2022, 111 (07) : 2381 - 2406
  • [50] Skeleton-based action recognition by part-aware graph convolutional networks
    Qin, Yang
    Mo, Lingfei
    Li, Chenyang
    Luo, Jiayi
    VISUAL COMPUTER, 2020, 36 (03): : 621 - 631