A transformer model with enhanced feature learning and its application in rotating machinery diagnosis

被引:14
|
作者
Zhu, Shenrui [1 ]
Liao, Bin [1 ]
Hua, Yi [1 ]
Zhang, Chunlin [1 ]
Wan, Fangyi [1 ]
Qing, Xinlin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent fault diagnosis; Transformer; Patch splitting; Positional encoding; Varying-size inference; BEARING FAULT-DIAGNOSIS; VIBRATION;
D O I
10.1016/j.isatra.2022.07.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has become the prevailing trend of intelligent fault diagnosis for rotating machines. Compared to early-stage methods, deep learning methods use automatic feature extraction instead of manual feature design. However, conventional intelligent diagnosis models are trapped by a dilemma that simple models are unable to tackle difficult cases, while complicated models are likely to over-parameterize. In this paper, a transformer-based model, Periodic Representations for Transformers (PRT) is proposed. PRT uses a dense-overlapping split strategy to enhance the feature learning inside sequence patches. Combined with the inherent capability of capturing long range dependencies of transformer, and the further information extraction of class-attention, PRT has excellent feature extraction abilities and could capture characteristic features directly from raw vibration signals. Moreover, PRT adopts a two-stage positional encoding method to encode position information both among and inside patches, which could adapt to different input lengths. A novel inference method to use larger inference sample sizes is further proposed to improve the performance of PRT. The effectiveness of PRT is verified on two datasets, where it achieves comparable and even better accuracies than the benchmark and state-of-the-art methods. PRT has the least FLOPs among the best performing models and could be further improved by the inference strategy, reaching an accuracy near 100%.(c) 2022 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
    Zhu, Zhiqin
    Lei, Yangbo
    Qi, Guanqiu
    Chai, Yi
    Mazur, Neal
    An, Yiyao
    Huang, Xinghua
    MEASUREMENT, 2023, 206
  • [22] A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
    Zhu, Zhiqin
    Lei, Yangbo
    Qi, Guanqiu
    Chai, Yi
    Mazur, Neal
    An, Yiyao
    Huang, Xinghua
    MEASUREMENT, 2023, 206
  • [23] Fractal geometry and its application to vibration faults diagnosis for rotating machinery
    Jiang, DX
    Chunsheng, E
    Ni, WD
    DAMAGE ASSESSMENT OF STRUCTURES, PROCEEDINGS, 2003, 245-2 : 265 - 272
  • [24] Improved LPCDA Algorithm and Its Application in Fault Diagnosis of Rotating Machinery
    Xue Y.
    Zhao R.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2023, 43 (01): : 132 - 138
  • [25] Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning
    Zhang, Yuyan
    Li, Xinyu
    Gao, Liang
    Wang, Lihui
    Wen, Long
    JOURNAL OF MANUFACTURING SYSTEMS, 2018, 48 : 34 - 50
  • [26] Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
    Li, Chuan
    Sanchez, Rene-Vinicio
    Zurita, Grover
    Cerrada, Mariela
    Cabrera, Diego
    SENSORS, 2016, 16 (06)
  • [27] Unsupervised feature learning with reconstruction sparse filtering for intelligent fault diagnosis of rotating machinery
    Zhang, Zhiqiang
    Yang, Qingyu
    APPLIED SOFT COMPUTING, 2022, 115
  • [28] Unsupervised feature learning with reconstruction sparse filtering for intelligent fault diagnosis of rotating machinery
    Zhang, Zhiqiang
    Yang, Qingyu
    Applied Soft Computing, 2022, 115
  • [29] Fast time-frequency manifold learning and its reconstruction for transient feature extraction in rotating machinery fault diagnosis
    Ding, Xiaoxi
    Li, Quanchang
    Lin, Lun
    He, Qingbo
    Shao, Yimin
    MEASUREMENT, 2019, 141 : 380 - 395
  • [30] Online feature learning for condition monitoring of rotating machinery
    Martin-del-Campo, S.
    Sandin, F.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 64 : 187 - 196