Generalized torsion elements in the fundamental groups of once punctured torus bundles

被引:0
|
作者
Sekino, Nozomu [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Komaba 3-8-1,Meguro Ku, Tokyo 1538914, Japan
关键词
Generalized torsion element; Bi-orderablity; ORDERABILITY; KNOTS;
D O I
10.1016/j.topol.2024.108840
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized torsion element in a group is a non-trivial element such that some products of its conjugates are the identity element. This is an obstruction for a group being bi-orderable. Though it is known that there is a non-bi-orderable group without generalized torsion elements, it is conjectured that 3-manifold groups without generalized torsion elements are bi-orderable. In this paper, we find generalized torsion elements in the fundamental groups of once punctured torus bundles which are not bi-orderable, and this implies that the conjecture is true for the fundamental groups of once punctured torus bundles. Our result contains examples of generalized torsion elements in the fundamental groups of tunnel number two hyperbolic once punctured torus bundles. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Generalized torsion elements in groups
    Raimundo Bastos
    Csaba Schneider
    Danilo Silveira
    Archiv der Mathematik, 2024, 122 : 121 - 131
  • [22] Generalized torsion elements in groups
    Bastos, Raimundo
    Schneider, Csaba
    Silveira, Danilo
    ARCHIV DER MATHEMATIK, 2024, 122 (02) : 121 - 131
  • [23] INCOMPRESSIBLE SURFACES IN PUNCTURED-TORUS BUNDLES
    FLOYD, W
    HATCHER, A
    TOPOLOGY AND ITS APPLICATIONS, 1982, 13 (03) : 263 - 282
  • [24] On hyperbolic once-punctured-torus bundles III: Comparing two tessellations of the complex plane
    Dicks, Warren
    Sakuma, Makoto
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (12) : 1873 - 1899
  • [25] On canonical triangulations of once-punctured torus bundles and two-bridge link complements
    Gueritaud, Francois
    Futer, David
    GEOMETRY & TOPOLOGY, 2006, 10 : 1239 - 1284
  • [26] Guts of surfaces in punctured-torus bundles
    Kuessner, T
    ARCHIV DER MATHEMATIK, 2006, 86 (02) : 176 - 184
  • [27] Representations of the Braid Group and Punctured Torus Bundles
    Morifuji, Takayuki
    Suzuki, Masaaki
    KYUNGPOOK MATHEMATICAL JOURNAL, 2009, 49 (01): : 7 - 14
  • [28] Guts of surfaces in punctured-torus bundles
    Thilo Kuessner
    Archiv der Mathematik, 2006, 86 : 176 - 184
  • [29] IRREDUCIBLE TRIANGULATIONS OF THE ONCE-PUNCTURED TORUS
    Lawrencenko, S.
    Sulanke, T.
    Villar, M. T.
    Zgonnik, L. V.
    Chavez, M. J.
    Portillo, J. R.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 277 - 304
  • [30] THE CORE CHAIN OF CIRCLES OF MASKIT'S EMBEDDING FOR ONCE-PUNCTURED TORUS GROUPS
    Scorza, Irene
    CONFORMAL GEOMETRY AND DYNAMICS, 2006, 10 : 288 - 325