Engineered Saccharomyces cerevisiae harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production

被引:3
|
作者
Huang, Mengtian [1 ,2 ]
Cui, Xinxin [1 ]
Zhang, Peining [1 ]
Jin, Zhuocheng [1 ]
Li, Huanan [1 ]
Liu, Jiashu [1 ]
Jiang, Zhengbing [1 ,3 ]
机构
[1] Hubei Univ, Sch Life Sci, State Key Lab Biocatalysis & Enzyme Engn, Wuhan, Peoples R China
[2] Hubei Engn Univ, Coll Life Sci & Technol, Xiaogan, Peoples R China
[3] Hubei Univ, Sch life Sci, State Key Lab Biocatalysis & Enzyme Engn, Wuhan 430062, Peoples R China
来源
关键词
Saccharomyces cerevisiae; transcriptome analysis; xylose and glucose fermentation; xylose isomerase; xylose transporter; PENTOSE-PHOSPHATE PATHWAY; STRAINS; IDENTIFICATION; TRANSKETOLASE; EVOLUTION; GENES; PE-2;
D O I
10.1080/10826068.2024.2315479
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Saccharomyces cerevisiae cannot assimilate xylose, second to glucose derived from lignocellulosic biomass. Here, the engineered S. cerevisiae strains INVSc-XI and INVSc-XI/XT were constructed using xylA and Xltr1p to co-utilize xylose and glucose, achieving economic viability and sustainable production of fuels. The xylose utilization rate of INVSc-XI/XT was 2.3-fold higher than that of INVSc-XI, indicating that overexpressing Xltr1p could further enhance xylose utilization. In mixed sugar media, a small amount of glucose enhanced the consumption of xylose by INVSc-XI/XT. Transcriptome analysis showed that glucose increased the upregulation of acetate of coenzyme A synthetase (ACS), alcohol dehydrogenase (ADH), and transketolase (TKL) gene expression in INVSc-XI/XT, further promoting xylose utilization and ethanol yield. The highest ethanol titer of 2.91 g/L with a yield of 0.29 g/g at 96 h by INVSc-XI/XT was 56.9% and 63.0% of the theoretical ethanol yield from glucose and xylose, respectively. These results showed overexpression of xylA and Xltr1p is a promising strategy for improving xylose and glucose conversion to ethanol. Although the ability of strain INVSc-XI/XT to produce ethanol was not very satisfactory, glucose was discovered to influence xylose utilization in strain INVSc-XI/XT. Altering the glucose concentration is a promising strategy to improve the xylose and glucose co-utilization.
引用
收藏
页码:1058 / 1067
页数:10
相关论文
共 50 条
  • [41] High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
    Kaisa Karhumaa
    Romain Fromanger
    Bärbel Hahn-Hägerdal
    Marie-F. Gorwa-Grauslund
    Applied Microbiology and Biotechnology, 2007, 73 : 1039 - 1046
  • [42] Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation
    Li, Yun-Cheng
    Gou, Zi-Xi
    Zhang, Ying
    Xia, Zi-Yuan
    Tang, Yue-Qin
    Kida, Kenji
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2017, 48 (04) : 791 - 800
  • [43] The role of peroxisomes in xylose alcoholic fermentation in the engineered Saccharomyces cerevisiae
    Dzanaeva, Ljubov
    Kruk, Barbara
    Ruchala, Justyna
    Nielsen, Jens
    Sibirny, Andriy
    Dmytruk, Kostyantyn
    CELL BIOLOGY INTERNATIONAL, 2020, 44 (08) : 1606 - 1615
  • [44] Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
    Ha, Suk-Jin
    Galazka, Jonathan M.
    Kim, Soo Rin
    Choi, Jin-Ho
    Yang, Xiaomin
    Seo, Jin-Ho
    Glass, N. Louise
    Cate, Jamie H. D.
    Jin, Yong-Su
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (02) : 504 - 509
  • [45] XYLOSE FERMENTATION BY SACCHAROMYCES-CEREVISIAE
    KOTTER, P
    CIRIACY, M
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1993, 38 (06) : 776 - 783
  • [46] Co-fermentation of xylose and glucose from ionic liquid pretreated sugar cane bagasse for bioethanol production using engineered xylose assimilating yeast
    Amoah, Jerome
    Ogura, Kazuma
    Schmetz, Quentin
    Kondo, Akihiko
    Ogino, Chiaki
    BIOMASS & BIOENERGY, 2019, 128
  • [47] Application of a compatible xylose isomerase in simultaneous bioconversion of glucose and xylose to ethanol
    Chandrakant P.
    Bisaria V.S.
    Biotechnology and Bioprocess Engineering, 2000, 5 (1) : 32 - 39
  • [48] Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonas mobilis and Pachysolen tannophilus
    Fu, Nan
    Peiris, Paul
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2008, 24 (07): : 1091 - 1097
  • [49] Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonas mobilis and Pachysolen tannophilus
    Nan Fu
    Paul Peiris
    World Journal of Microbiology and Biotechnology, 2008, 24 : 1091 - 1097
  • [50] Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review
    Chen, Yanli
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2011, 38 (05) : 581 - 597