Generative adversarial networks in construction applications

被引:11
|
作者
Chai, Ping [1 ]
Hou, Lei [1 ]
Zhang, Guomin [1 ]
Tushar, Quddus [1 ]
Zou, Yang [2 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
[2] Univ Auckland, Dept Civil & Environm Engn, Auckland 1023, New Zealand
关键词
GAN; Literature review; DL; Design generation; Image quality enhancement; Data handling; Safety; VISUALIZATION TECHNOLOGY; MANAGEMENT; DEBLURGAN; DYNAMICS; SAFETY; GAN;
D O I
10.1016/j.autcon.2024.105265
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Generative Adversarial Networks (GANs) have emerged as a powerful tool rapidly advancing the state-of-the-art in numerous domains. This paper conducts a comprehensive review to analyse the applications of GANs in the construction industry over the years, and the review aims to enrich the body of knowledge on this emerging Deep Learning (DL) algorithm in the construction sector. To achieve this, a comprehensive exploration of the variation in GANs is first conducted to establish a general foundation of knowledge. Subsequently, 76 publications from the year 2014 to 2023 are analysed to identify the growth and significance of the current research landscape in the construction field. The results of the study indicate that GANs are predominantly applied in four key construction domains, yet several limitations persist. This study serves as a crucial reference point for researchers, practitioners, and stakeholders seeking to understand and harness the transformative power of GANs in construction.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A survey of generative adversarial networks
    Zhu, Kongtao
    Liu, Xiwei
    Yang, Hongxue
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2768 - 2773
  • [32] Triple Generative Adversarial Networks
    Li, Chongxuan
    Xu, Kun
    Zhu, Jun
    Liu, Jiashuo
    Zhang, Bo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9629 - 9640
  • [33] Stacked Generative Adversarial Networks
    Huang, Xun
    Li, Yixuan
    Poursaeed, Omid
    Hopcroft, John
    Belongie, Serge
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1866 - 1875
  • [34] Graphical Generative Adversarial Networks
    Li, Chongxuan
    Welling, Max
    Zhu, Jun
    Zhang, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [35] Triangle Generative Adversarial Networks
    Gan, Zhe
    Chen, Liqun
    Wang, Weiyao
    Pu, Yunchen
    Zhang, Yizhe
    Liu, Hao
    Li, Chunyuan
    Carin, Lawrence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [36] Evolutionary Generative Adversarial Networks
    Wang, Chaoyue
    Xu, Chang
    Yao, Xin
    Tao, Dacheng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (06) : 921 - 934
  • [37] A Review on Generative Adversarial Networks
    Yuan, Yiqin
    Guo, Yuhao
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 392 - 401
  • [38] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173
  • [39] Constrained Generative Adversarial Networks
    Chao, Xiaopeng
    Cao, Jiangzhong
    Lu, Yuqin
    Dai, Qingyun
    Liang, Shangsong
    IEEE ACCESS, 2021, 9 : 19208 - 19218
  • [40] Structured Generative Adversarial Networks
    Deng, Zhijie
    Zhang, Hao
    Liang, Xiaodan
    Yang, Luona
    Xu, Shizhen
    Zhu, Jun
    Xing, Eric P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30