Emotion recognition and artificial intelligence: A systematic review (2014-2023) and research recommendations

被引:45
|
作者
Khare, Smith K. [1 ]
Blanes-Vidal, Victoria [1 ]
Nadimi, Esmaeil S. [1 ]
Acharya, U. Rajendra [2 ]
机构
[1] Univ Southern Denmark, Maersk Mc Kinney Moller Inst, Fac Engn, Appl & Data Sci Unit, Odense, Denmark
[2] Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Qld, Australia
关键词
Emotion recognition; Speech; Facial images; Electroencephalogram; Electrocardiogram; Eye tracking; Galvanic skin response; Artificial intelligence; Machine learning; Deep learning; FEATURE-EXTRACTION; NEURAL-NETWORK; LEARNING TECHNIQUES; MODE DECOMPOSITION; SPEECH; EEG; CHILDREN; ATTENTION; SIGNALS; ELECTROCARDIOGRAM;
D O I
10.1016/j.inffus.2023.102019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion recognition is the ability to precisely infer human emotions from numerous sources and modalities using questionnaires, physical signals, and physiological signals. Recently, emotion recognition has gained attention because of its diverse application areas, like affective computing, healthcare, human-robot interactions, and market research. This paper provides a comprehensive and systematic review of emotion recognition techniques of the current decade. The paper includes emotion recognition using physical and physiological signals. Physical signals involve speech and facial expression, while physiological signals include electroencephalogram, electrocardiogram, galvanic skin response, and eye tracking. The paper provides an introduction to various emotion models, stimuli used for emotion elicitation, and the background of existing automated emotion recognition systems. This paper covers comprehensive searching and scanning of wellknown datasets followed by design criteria for review. After a thorough analysis and discussion, we selected 142 journal articles using PRISMA guidelines. The review provides a detailed analysis of existing studies and available datasets of emotion recognition. Our review analysis also presented potential challenges in the existing literature and directions for future research.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] The Promises and Challenges of Artificial Intelligence for Teachers: a Systematic Review of Research
    Celik, Ismail
    Dindar, Muhterem
    Muukkonen, Hanni
    Jarvela, Sanna
    [J]. TECHTRENDS, 2022, 66 (04) : 616 - 630
  • [22] The Promises and Challenges of Artificial Intelligence for Teachers: a Systematic Review of Research
    Ismail Celik
    Muhterem Dindar
    Hanni Muukkonen
    Sanna Järvelä
    [J]. TechTrends, 2022, 66 : 616 - 630
  • [23] Emotion in artificial intelligence and artificial life research: Facing problems
    de Freitas, JS
    Gudwin, R
    Queiroz, J
    [J]. INTELLIGENT VIRTUAL AGENTS, PROCEEDINGS, 2005, 3661 : 501 - 501
  • [24] Artificial intelligence in information systems research: A systematic literature review and research agenda
    Collins, Christopher
    Dennehy, Denis
    Conboy, Kieran
    Mikalef, Patrick
    [J]. INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2021, 60
  • [25] Mycobacterial infections in cats (Felis catus) as a potential threat to humans - a review 2014-2023
    Didkowska, Anna
    Zmuda, Piotr
    Orlowska, Blanka
    Anusz, Krzysztof
    [J]. MEDYCYNA WETERYNARYJNA-VETERINARY MEDICINE-SCIENCE AND PRACTICE, 2024, 80 (02): : 53 - 57
  • [26] A systematic review on research utilising artificial intelligence for open source intelligence (OSINT) applications
    Browne, Thomas Oakley
    Abedin, Mohammad
    Chowdhury, Mohammad Jabed Morshed
    [J]. INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, 23 (04) : 2911 - 2938
  • [27] Emotion recognition study: systematic review
    Telaska, Tatiele dos Santos
    Caron, Lilian
    Jaworski de Sa Riechi, Tatiana Izabele
    [J]. CUADERNOS DE NEUROPSICOLOGIA-PANAMERICAN JOURNAL OF NEUROPSYCHOLOGY, 2020, 14 (03): : 75 - 85
  • [28] Fairness of artificial intelligence in healthcare: review and recommendations
    Ueda, Daiju
    Kakinuma, Taichi
    Fujita, Shohei
    Kamagata, Koji
    Fushimi, Yasutaka
    Ito, Rintaro
    Matsui, Yusuke
    Nozaki, Taiki
    Nakaura, Takeshi
    Fujima, Noriyuki
    Tatsugami, Fuminari
    Yanagawa, Masahiro
    Hirata, Kenji
    Yamada, Akira
    Tsuboyama, Takahiro
    Kawamura, Mariko
    Fujioka, Tomoyuki
    Naganawa, Shinji
    [J]. JAPANESE JOURNAL OF RADIOLOGY, 2024, 42 (01) : 3 - 15
  • [29] Fairness of artificial intelligence in healthcare: review and recommendations
    Daiju Ueda
    Taichi Kakinuma
    Shohei Fujita
    Koji Kamagata
    Yasutaka Fushimi
    Rintaro Ito
    Yusuke Matsui
    Taiki Nozaki
    Takeshi Nakaura
    Noriyuki Fujima
    Fuminari Tatsugami
    Masahiro Yanagawa
    Kenji Hirata
    Akira Yamada
    Takahiro Tsuboyama
    Mariko Kawamura
    Tomoyuki Fujioka
    Shinji Naganawa
    [J]. Japanese Journal of Radiology, 2024, 42 : 3 - 15
  • [30] Probiotics' Effects in the Treatment of Anxiety and Depression: A Comprehensive Review of 2014-2023 Clinical Trials
    Merkouris, Ermis
    Mavroudi, Theodora
    Miliotas, Daniil
    Tsiptsios, Dimitrios
    Serdari, Aspasia
    Christidi, Foteini
    Doskas, Triantafyllos K.
    Mueller, Christoph
    Tsamakis, Konstantinos
    [J]. MICROORGANISMS, 2024, 12 (02)