Vector spin Seebeck effect and spin swapping effect in antiferromagnetic insulators with non-collinear spin structure

被引:1
|
作者
Xu, Jinsong [1 ]
Lin, Weiwei [2 ]
He, Jiaming [3 ]
Zhou, J. -S [3 ]
Qu, Danru [4 ]
Huang, Ssu-Yen [5 ]
Chien, C. L. [1 ]
机构
[1] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[2] Southeast Univ, Sch Phys, Key Lab Quantum Mat & Devices, Minist Educ, Nanjing 211189, Peoples R China
[3] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[4] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan
[5] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
基金
中国国家自然科学基金;
关键词
MAGNETORESISTANCE;
D O I
10.1063/5.0156379
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Antiferromagnets (AFs) are prospective for next-generation high-density and high-speed spintronic applications due to their negligible stray field and ultrafast spin dynamics, notwithstanding the challenges in detecting and manipulating AF order with no magnetization (M = 0). Among the AFs, non-collinear AFs are of particular interest because of their unique properties arising from the non-collinear spin structure and the small magnetization M. In this work, we describe the recently observed vector spin Seebeck effect in non-collinear LuFeO3, where the magneto-thermovoltage under an in-plane temperature gradient, not previously observed, is consistent with the predicted spin swapping effect. Our results shed light on the importance of the non-collinear spin structure in the emerging spin phenomena in non-collinear AFs and offer a new class of materials for AF spintronics and spin caloritronics.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Picosecond Spin Seebeck Effect
    Kimling, Johannes
    Choi, Gyung-Min
    Brangham, Jack T.
    Matalla-Wagner, Tristan
    Huebner, Torsten
    Kuschel, Timo
    Yang, Fengyuan
    Cahill, David G.
    PHYSICAL REVIEW LETTERS, 2017, 118 (05)
  • [32] Spin Seebeck effect in graphene
    Hu, Xin
    Ominato, Yuya
    Matsuo, Mamoru
    Physical Review B, 2024, 110 (24)
  • [33] Robust spin current generated by the spin Seebeck effect
    Chang, Feng-Jen
    Lin, Jauyn Grace
    Huang, Ssu-Yen
    PHYSICAL REVIEW MATERIALS, 2017, 1 (03):
  • [34] Observation of the spin Seebeck effect
    Uchida, K.
    Takahashi, S.
    Harii, K.
    Ieda, J.
    Koshibae, W.
    Ando, K.
    Maekawa, S.
    Saitoh, E.
    NATURE, 2008, 455 (7214) : 778 - 781
  • [35] Theory of the spin Seebeck effect
    Adachi, Hiroto
    Uchida, Ken-ichi
    Saitoh, Eiji
    Maekawa, Sadamichi
    REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (03)
  • [36] Spin Hall effect and spin swapping in diffusive superconductors
    Espedal, Camilla
    Lange, Peter
    Sadjina, Severin
    Mal'shukov, A. G.
    Brataas, Arne
    PHYSICAL REVIEW B, 2017, 95 (05)
  • [37] Cryogenic spin Seebeck effect
    Elyasi, Mehrdad
    Bauer, Gerrit E. W.
    PHYSICAL REVIEW B, 2021, 103 (05)
  • [38] Hinged quantum spin Hall effect in antiferromagnetic topological insulators
    Ding, Yue-Ran
    Xu, Dong-Hui
    Chen, Chui-Zhen
    Xie, X. C.
    PHYSICAL REVIEW B, 2020, 101 (04)
  • [39] Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
    I. Gross
    W. Akhtar
    V. Garcia
    L. J. Martínez
    S. Chouaieb
    K. Garcia
    C. Carrétéro
    A. Barthélémy
    P. Appel
    P. Maletinsky
    J.-V. Kim
    J. Y. Chauleau
    N. Jaouen
    M. Viret
    M. Bibes
    S. Fusil
    V. Jacques
    Nature, 2017, 549 : 252 - 256
  • [40] Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
    Gross, I.
    Akhtar, W.
    Garcia, V.
    Martinez, L. J.
    Chouaieb, S.
    Garcia, K.
    Carretero, C.
    Barthelemy, A.
    Appel, P.
    Maletinsky, P.
    Kim, J. -V.
    Chauleau, J. Y.
    Jaouen, N.
    Viret, M.
    Bibes, M.
    Fusil, S.
    Jacques, V.
    NATURE, 2017, 549 (7671) : 252 - +