Vector spin Seebeck effect and spin swapping effect in antiferromagnetic insulators with non-collinear spin structure

被引:1
|
作者
Xu, Jinsong [1 ]
Lin, Weiwei [2 ]
He, Jiaming [3 ]
Zhou, J. -S [3 ]
Qu, Danru [4 ]
Huang, Ssu-Yen [5 ]
Chien, C. L. [1 ]
机构
[1] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[2] Southeast Univ, Sch Phys, Key Lab Quantum Mat & Devices, Minist Educ, Nanjing 211189, Peoples R China
[3] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[4] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan
[5] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
基金
中国国家自然科学基金;
关键词
MAGNETORESISTANCE;
D O I
10.1063/5.0156379
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Antiferromagnets (AFs) are prospective for next-generation high-density and high-speed spintronic applications due to their negligible stray field and ultrafast spin dynamics, notwithstanding the challenges in detecting and manipulating AF order with no magnetization (M = 0). Among the AFs, non-collinear AFs are of particular interest because of their unique properties arising from the non-collinear spin structure and the small magnetization M. In this work, we describe the recently observed vector spin Seebeck effect in non-collinear LuFeO3, where the magneto-thermovoltage under an in-plane temperature gradient, not previously observed, is consistent with the predicted spin swapping effect. Our results shed light on the importance of the non-collinear spin structure in the emerging spin phenomena in non-collinear AFs and offer a new class of materials for AF spintronics and spin caloritronics.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Uncompensated spin elements in ferromagnetic and antiferromagnetic bilayer with non-collinear spin structure
    Mitsumata, C
    Sakuma, A
    Fukamichi, K
    Tsunoda, M
    MATERIALS TRANSACTIONS, 2006, 47 (01) : 11 - 14
  • [2] Antiferromagnetic Spin Seebeck Effect
    Wu, Stephen M.
    Zhang, Wei
    Amit, K. C.
    Borisov, Pavel
    Pearson, John E.
    Jiang, J. Samuel
    Lederman, David
    Hoffmann, Axel
    Bhattacharya, Anand
    PHYSICAL REVIEW LETTERS, 2016, 116 (09)
  • [3] Magnon diffusion theory for the spin Seebeck effect in ferromagnetic and antiferromagnetic insulators
    Rezende, Sergio M.
    Azevedo, Antonio
    Rodriguez-Suarez, Roberto L.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (17)
  • [4] Distinguishing antiferromagnetic spin sublattices via the spin Seebeck effect
    Luo, Yongming
    Liu, Changjiang
    Saglam, Hilal
    Li, Yi
    Zhang, Wei
    Zhang, Steven S-L
    Pearson, John E.
    Fisher, Brandon
    Zhou, Tiejun
    Bhattacharya, Anand
    Hoffmann, Axel
    PHYSICAL REVIEW B, 2021, 103 (02)
  • [5] Non-collinear spin in electronic structure calculations
    Clark, S. J.
    Hawkhead, Z.
    CONTEMPORARY PHYSICS, 2023, 64 (02) : 111 - 126
  • [6] Spin Seebeck and spin Nernst effects of magnons in noncollinear antiferromagnetic insulators
    Mook, Alexander
    Neumann, Robin R.
    Henk, Jurgen
    Mertig, Ingrid
    PHYSICAL REVIEW B, 2019, 100 (10)
  • [7] Spin Seebeck effect in nonmagnetic excitonic insulators
    Nasu, Joji
    Naka, Makoto
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [8] Spin Seebeck effect through antiferromagnetic NiO
    Prakash, Arati
    Brangham, Jack
    Yang, Fengyuan
    Heremans, Joseph P.
    PHYSICAL REVIEW B, 2016, 94 (01)
  • [9] Spin Seebeck effect near the antiferromagnetic spin-flop transition
    Reitz, Derek
    Li, Junxue
    Yuan, Wei
    Shi, Jing
    Tserkovnyak, Yaroslav
    PHYSICAL REVIEW B, 2020, 102 (02)
  • [10] Composite Spin Hall Conductivity from Non-Collinear Antiferromagnetic Order
    Novakov, Steve
    Meisenheimer, Peter B. B.
    Pan, Grace A. A.
    Kezer, Patrick
    Vu, Nguyen M. M.
    Grutter, Alexander J. J.
    Need, Ryan F. F.
    Mundy, Julia A. A.
    Heron, John T. T.
    ADVANCED MATERIALS, 2023, 35 (31)