Two-channel EEG based diagnosis of panic disorder and major depressive disorder using machine learning and non-linear dynamical methods

被引:4
|
作者
Aderinwale, Adedoyin [1 ,2 ]
Tolossa, Gemechu Bekele [1 ,3 ]
Kim, Ah Young [2 ]
Jang, Eun Hye [2 ]
Lee, Yong-il [1 ]
Jeon, Hong Jin [4 ]
Kim, Hyewon [4 ]
Yu, Han Young [2 ,6 ]
Jeong, Jaeseung [5 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Bio & Brain Engn, Daejeon 34141, South Korea
[2] Elect & Telecommun Res Inst ETRI, Daejeon 34129, South Korea
[3] Washington Univ, Sch Med, Dept Neurosci, St Louis, MO 63110 USA
[4] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Depress Ctr,Dept Psychiat, Seoul, South Korea
[5] Korea Adv Inst Sci & Technol KAIST, Dept Brain & Cognit Sci, 291 Daehak Ro, Daejeon 34141, South Korea
[6] Elect & Telecommun Res Inst ETRI, 218 Gajeong Ro, Daejeon 34129, South Korea
基金
新加坡国家研究基金会;
关键词
Psychiatric disorders; Non -linear analysis; Machine learning; Diagnosis; LEMPEL-ZIV COMPLEXITY; COGNITIVE-BEHAVIORAL THERAPY; ALZHEIMERS-DISEASE PATIENTS; WAVELET-CHAOS METHODOLOGY; GENERALIZED ANXIETY; NEUROANATOMICAL HYPOTHESIS; BIOLOGICAL SUBSTRATE; BACKGROUND ACTIVITY; LYAPUNOV EXPONENTS; EMOTION REGULATION;
D O I
10.1016/j.pscychresns.2023.111641
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The current study aimed to investigate the possibility of rapid and accurate diagnoses of Panic disorder (PD) and Major depressive disorder (MDD) using machine learning. The support vector machine method was applied to 2channel EEG signals from the frontal lobes (Fp1 and Fp2) of 149 participants to classify PD and MDD patients from healthy individuals using non-linear measures as features. We found significantly lower correlation dimension and Lempel-Ziv complexity in PD patients and MDD patients in the left hemisphere compared to healthy subjects at rest. Most importantly, we obtained a 90% accuracy in classifying MDD patients vs. healthy individuals, a 68% accuracy in classifying PD patients vs. controls, and a 59% classification accuracy between PD and MDD patients. In addition to demonstrating classification performance in a simplified setting, the observed differences in EEG complexity between subject groups suggest altered cortical processing present in the frontal lobes of PD patients that can be captured through non-linear measures. Overall, this study suggests that machine learning and non-linear measures using only 2-channel frontal EEGs are useful for aiding the rapid diagnosis of panic disorder and major depressive disorder.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis
    Devon Watts
    Rafaela Fernandes Pulice
    Jim Reilly
    Andre R. Brunoni
    Flávio Kapczinski
    Ives Cavalcante Passos
    Translational Psychiatry, 12
  • [22] A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD)
    Mumtaz, Wajid
    Ali, Syed Saad Azhar
    Yasin, Mohd Azhar Mohd
    Malik, Aamir Saeed
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (02) : 233 - 246
  • [23] A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD)
    Wajid Mumtaz
    Syed Saad Azhar Ali
    Mohd Azhar Mohd Yasin
    Aamir Saeed Malik
    Medical & Biological Engineering & Computing, 2018, 56 : 233 - 246
  • [24] Classification for psychiatric disorders including schizophrenia, bipolar disorder, and major depressive disorder using machine learning
    Yang, Qingxia
    Xing, Qiaowen
    Yang, Qingfang
    Gong, Yaguo
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 5054 - 5064
  • [25] Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder
    He, Kewei
    Zhang, Jingbo
    Huang, Yang
    Mo, Xue
    Yu, Renqiang
    Min, Jing
    Zhu, Tong
    Ma, Yunfeng
    He, Xiangqian
    Lv, Fajin
    Zeng, Jianguang
    Li, Chao
    Mcnamara, Robert K.
    Lei, Du
    Liu, Mengqi
    NEURORADIOLOGY, 2025, : 921 - 930
  • [26] Detection of Major Depressive Disorder using Signal Processing and Machine Learning Approaches
    Saleque, Shahriar
    Spriha, Gul-A-Zannat
    Kamal, Rasheeq Ishraq
    Khan, Rafia Tabassum
    Chakrabarty, Amitabha
    Parvez, Mohammad Zavid
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1032 - 1037
  • [27] Effective classification of major depressive disorder patients using machine learning techniques
    Mahendran N.
    Vincent D.R.
    Recent Patents on Computer Science, 2019, 12 (01) : 41 - 48
  • [28] SE-1DCNN-LSTM: A Deep Learning Framework for EEG-Based Automatic Diagnosis of Major Depressive Disorder and Bipolar Disorder
    Zhao, Ziyu
    Shen, Hui
    Hu, Dewen
    Zhang, Kerang
    HUMAN BRAIN AND ARTIFICIAL INTELLIGENCE, HBAI 2022, 2023, 1692 : 60 - 72
  • [29] Machine Learning-Based Electroencephalographic Phenotypes of Schizophrenia and Major Depressive Disorder
    Jang, Kuk-In
    Kim, Sungkean
    Kim, Soo Young
    Lee, Chany
    Chae, Jeong-Ho
    FRONTIERS IN PSYCHIATRY, 2021, 12
  • [30] A Systematic Evaluation of Machine Learning-Based Biomarkers for Major Depressive Disorder
    Winter, Nils R.
    Blanke, Julian
    Leenings, Ramona
    Ernsting, Jan
    Fisch, Lukas
    Sarink, Kelvin
    Barkhau, Carlotta
    Emden, Daniel
    Thiel, Katharina
    Flinkenfluegel, Kira
    Winter, Alexandra
    Goltermann, Janik
    Meinert, Susanne
    Dohm, Katharina
    Repple, Jonathan
    Gruber, Marius
    Leehr, Elisabeth J.
    Opel, Nils
    Grotegerd, Dominik
    Redlich, Ronny
    Nitsch, Robert
    Bauer, Jochen
    Heindel, Walter
    Gross, Joachim
    Risse, Benjamin
    Andlauer, Till F. M.
    Forstner, Andreas J.
    Noethen, Markus M.
    Rietschel, Marcella
    Hofmann, Stefan G.
    Pfarr, Julia-Katharina
    Teutenberg, Lea
    Usemann, Paula
    Thomas-Odenthal, Florian
    Wroblewski, Adrian
    Brosch, Katharina
    Stein, Frederike
    Jansen, Andreas
    Jamalabadi, Hamidreza
    Alexander, Nina
    Straube, Benjamin
    Nenadic, Igor
    Kircher, Tilo
    Dannlowski, Udo
    Hahn, Tim
    JAMA PSYCHIATRY, 2024, 81 (04) : 386 - 395