Fractal interpolation function on products of the Sierpinski gaskets

被引:10
|
作者
Prasad, S. A. [1 ]
Verma, S. [2 ]
机构
[1] Indian Inst Technol Tirupati, Dept Math & Stat, Tirupati 517506, India
[2] Indian Inst Informat Technol Allahabad, Dept Appl Sci, Prayagraj 211015, India
关键词
Fractal dimension; Fractal interpolation; Sierpinski gasket; Holder continuous; Smoothness;
D O I
10.1016/j.chaos.2022.112988
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we aim to construct fractal interpolation functions (FIFs) on the product of two Sierpinski gaskets. Further, we collect some results regarding smoothness of the constructed FIFs. We prove, in particular, that the FIFs are Holder functions under specific conditions. In the final section, we obtain some bounds on the fractal dimensions of FIFs.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Geodesic interpolation on Sierpinski gaskets
    Davis, Caitlin M.
    LeGare, Laura A.
    McCartan, Cory W.
    Rogers, Luke
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (02) : 117 - 152
  • [2] Fractal interpolation on the Sierpinski Gasket
    Celik, Derya
    Kocak, Sahin
    Ozdemir, Yunus
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 343 - 347
  • [3] Partial differential equations on products of Sierpinski gaskets
    Bockelman, Brian
    Strichartz, Robert S.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) : 1361 - 1375
  • [4] ON THE PROPAGATOR OF SIERPINSKI GASKETS
    KLAFTER, J
    ZUMOFEN, G
    BLUMEN, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (20): : 4835 - 4842
  • [5] Fractal dimension of α-fractal function on the Sierpinski Gasket
    Agrawal, Vishal
    Som, Tanmoy
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3781 - 3787
  • [6] Some properties of fractal interpolation functions on Sierpinski gasket
    Ri, Song-Gyong
    Ruan, Huo-Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) : 313 - 322
  • [7] On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets
    B. M. Hambly
    Probability Theory and Related Fields, 2000, 117 : 221 - 247
  • [8] On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets
    Hambly, BM
    PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (02) : 221 - 247
  • [9] Resistance of random Sierpinski gaskets
    Fontaine, Daniel
    Smith, Thomas
    Teplyaev, Alexander
    QUANTUM GRAPHS AND THEIR APPLICATIONS, 2006, 415 : 121 - +
  • [10] QUANTUM WALKS ON SIERPINSKI GASKETS
    Lara, Pedro Carlos S.
    Portugal, Renato
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (08)