Spin-wave dynamics controlled by tunable ac magnonic crystal

被引:0
|
作者
Liu, Ankang [1 ]
Finkel'stein, Alexander M. [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[2] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
关键词
Crystals - Elastic waves - Electric impedance measurement - Energy gap - Spin dynamics;
D O I
10.1103/PhysRevB.107.L180404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnonic crystal, which has a spatial modulation wave vector q, couples the spin wave with wave vector k to the one with wave vector k - q. For a conventional magnonic crystal with direct current (dc) supply, the spin waves around q/2 are resonantly coupled to the waves near -q/2, and a band gap is opened at k=+/- q/2. If instead of the dc current the magnonic crystal is supplied with an alternating current (ac), then the band gap is shifted to k satisfying |omega s(k) - omega s(k - q)|=omega ac; here omega s(k) is the dispersion of the spin wave, while omega acis the frequency of the ac modulation. The resulting gap in the case of the ac magnonic crystal is the half of the one caused by the dc with the same amplitude of modulation. The time evolution of the resonantly coupled spin waves controlled by properly suited ac pulses can be well interpreted as the motion on a Bloch sphere. The tunability of the ac magnonic crystal broadens the perspective of spin-wave computing.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Spin-wave dynamics in permalloy/cobalt magnonic crystals in the presence of a nonmagnetic spacer
    Malago, P.
    Giovannini, L.
    Zivieri, R.
    Gruszecki, P.
    Krawczyk, M.
    PHYSICAL REVIEW B, 2015, 92 (06):
  • [22] Spin-wave intermodal coupling in the interconnection of magnonic units
    Sadovnikov, A. V.
    Grachev, A. A.
    Gubanov, V. A.
    Odintsov, S. A.
    Martyshkin, A. A.
    Sheshukova, S. E.
    Sharaevskii, Yu. P.
    Nikitov, S. A.
    APPLIED PHYSICS LETTERS, 2018, 112 (14)
  • [23] Reconfigurable 3D magnonic crystal: Tunable and localized spin-wave excitations in CoFeB meander-shaped film
    Sadovnikov, A., V
    Talmelli, G.
    Gubbiotti, G.
    Beginin, E. N.
    Sheshukova, S.
    Nikitov, S. A.
    Adelmann, C.
    Ciubotaru, F.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 544
  • [24] Magnonic spin-wave modes in CoFeB antidot lattices
    Ulrichs, Henning
    Lenk, Benjamin
    Muenzenberg, Markus
    APPLIED PHYSICS LETTERS, 2010, 97 (09)
  • [25] Magnonic crystal theory of the spin-wave frequency gap in low-doped manganites
    Krawczyk, M.
    Puszkarski, H.
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (07)
  • [26] Spin-wave nonreciprocity based on interband magnonic transitions
    Di, K.
    Lim, H. S.
    Zhang, V. L.
    Ng, S. C.
    Kuok, M. H.
    APPLIED PHYSICS LETTERS, 2013, 103 (13)
  • [27] Spontaneous Exact Spin-Wave Fractals in Magnonic Crystals
    Richardson, Daniel
    Kalinikos, Boris A.
    Carr, Lincoln D.
    Wu, Mingzhong
    PHYSICAL REVIEW LETTERS, 2018, 121 (10)
  • [28] Lateral Spin-Wave Transport in a System of Nonidentical Magnonic-Crystal Microwave Guides
    V. A. Gubanov
    S. E. Sheshukova
    A. V. Sadovnikov
    Physics of the Solid State, 2021, 63 : 1361 - 1365
  • [29] Magnonic crystal theory of the spin-wave frequency gap in low-doped manganites
    Krawczyk, M.
    Puszkarski, H.
    Journal of Applied Physics, 2006, 100 (07):
  • [30] A spin-wave logic gate based on a width-modulated dynamic magnonic crystal
    Nikitin, Andrey A.
    Ustinov, Alexey B.
    Semenov, Alexander A.
    Chumak, Andrii V.
    Serga, Alexander A.
    Vasyuchka, Vitaliy I.
    Lahderanta, Erkki
    Kalinikos, Boris A.
    Hillebrands, Burkard
    APPLIED PHYSICS LETTERS, 2015, 106 (10)