EXISTENCE, UNIQUENESS AND STABILITY RESULTS FOR FRACTIONAL NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

被引:0
|
作者
Hamoud, A. [1 ]
Osman, M. [2 ]
机构
[1] Taiz Univ, Dept Math, Taizi 380015, Yemen
[2] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
关键词
Fractional Volterra-Fredholm integro-differential equation; Caputo sense; Generalized Ulam stability; Fixed point method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some new conditions for the existence and unique-ness of solutions for a class of nonlinear Caputo fractional Volterra-Fredholm integro-differential equations with integral boundary conditions. The desired results are proved by using Banach and Krasnoselskii's fixed point theorems. In addition, the Ulam-Hyers stability and Ulam-Hyers-Rassias stability for solutions of the given problem are also discussed. An example is presented to guarantee the validity of our results.
引用
收藏
页码:491 / 506
页数:16
相关论文
共 50 条
  • [31] New Numerical Results on Existence of Volterra-Fredholm Integral Equation of Nonlinear Boundary Integro-Differential Type
    HamaRashid, Hawsar
    Srivastava, Hari Mohan
    Hama, Mudhafar
    Mohammed, Pshtiwan Othman
    Al-Sarairah, Eman
    Almusawa, Musawa Yahya
    [J]. SYMMETRY-BASEL, 2023, 15 (06):
  • [32] Theoretical and Numerical Studies of Fractional Volterra-Fredholm Integro-Differential Equations in Banach Space
    Alsa'di, K.
    Long, N. M. A. Nik
    Eshkuvatov, Z. K.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (03): : 469 - 489
  • [33] EXISTENCE AND UNIQUENESS RESULTS FOR CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Hamoud, Ahmed A.
    Abdo, Mohammed S.
    Ghadle, Kirtiwant P.
    [J]. JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 22 (03) : 163 - 177
  • [34] Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations
    Dawood, Lafta A.
    Hamoud, Ahmed A.
    Mohammed, Nedal M.
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (02): : 158 - 163
  • [35] A Numerical Method for Investigating Fractional Volterra-Fredholm Integro-Differential Model
    Syam, Muhammed I.
    Sharadga, Mwaffag
    Hashim, Ishak
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1429 - 1448
  • [36] Evolutionary computational intelligence in solving a class of nonlinear Volterra-Fredholm integro-differential equations
    Kashkaria, Bothayna S. H.
    Syam, Muhammed I.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 314 - 323
  • [37] On analysis of the fuzzy fractional order Volterra-Fredholm integro-differential equation
    Ahmad, Naveed
    Abd Ullah
    Ullah, Aman
    Ahmad, Shabir
    Shah, Kamal
    Ahmad, Imtiaz
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 1827 - 1838
  • [38] Analytical and Numerical Approach for a Nonlinear Volterra-Fredholm Integro-differential Equation
    Bounaya, Mohammed Charif
    Lemita, Samir
    Touati, Sami
    Aissaoui, Mohamed Zine
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [39] Existence and Stability Results for Nonlinear Implicit Random Fractional Integro-Differential Equations
    Shahid, Sumbel
    Saifullah, Shahid
    Riaz, Usman
    Zada, Akbar
    Ben Moussa, Sana
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (02)
  • [40] AN EXISTENCE AND CONVERGENCE RESULTS FOR CAPUTO FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    Hamoud, Ahmed A.
    Ghadle, Kirtiwant P.
    Pathade, Priyanka A.
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 12 (03): : 307 - 327