Efficient quantum algorithm for solving structured problems via multistep quantum computation

被引:1
|
作者
Wang, Hefeng [1 ,2 ,3 ]
Yu, Sixia [4 ,5 ]
Xiang, Hua [6 ,7 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Nonequilibrium Synth & Modulat Condens, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Phys, Xian 710049, Peoples R China
[3] Shaanxi Prov Key Lab Quantum Informat & Quantum Op, Xian 710049, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[6] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[7] Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
关键词
Algorithm for solving - Computation process - Multisteps - No-cloning theorem - Quantum algorithms - Quantum state - Resonant transition - Reuse - Search problem - Structured problems;
D O I
10.1103/PhysRevResearch.5.L012004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In classical computation, a problem can be solved in multiple steps where the calculated results of each step can be copied and used repeatedly. However, in quantum computation, it is difficult to realize a similar multistep computation process because the no-cloning theorem forbids making copies of an unknown quantum state perfectly. We find a method based on a quantum resonant transition to protect and reuse an unknown quantum state that encodes the calculated results of an intermediate step without copying it, and present a quantum algorithm that solves a problem via multistep quantum computation. We demonstrate that this algorithm can solve a type of structured search problems efficiently.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Efficient linear optics quantum computation
    Milburn, GJ
    Ralph, T
    Gilchrist, A
    White, A
    Munro, WJ
    Kendon, V
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 229 - 234
  • [42] Efficient Computation of the Quantum RateDistortion Function
    He, Kerry
    Saunderson, James
    Fawzi, Hamza
    QUANTUM, 2024, 8
  • [43] Efficient linear optical quantum computation
    Pryde, GJ
    O'Brien, JL
    Bell, TB
    Langford, NK
    Milburn, GJ
    Ralph, TC
    White, AG
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 253 - 256
  • [44] Efficient linear optics quantum computation
    Knill, E
    Laflamme, R
    Milburn, GJ
    EXPERIMENTAL IMPLEMENTATION OF QUANTUM COMPUTATION, 2001, : 214 - 219
  • [45] A factorisation algorithm in Adiabatic Quantum Computation
    Kieu, Tien D.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (02):
  • [46] Projected cooling algorithm for quantum computation
    Lee, Dean
    Bonitati, Joey
    Given, Gabriel
    Hicks, Caleb
    Li, Ning
    Lu, Bing-Nan
    Rai, Abudit
    Sarkar, Avik
    Watkins, Jacob
    PHYSICS LETTERS B, 2020, 807
  • [47] Algorithm for quantum computation of particle decays
    Ciavarella, Anthony
    PHYSICAL REVIEW D, 2020, 102 (09)
  • [48] Computation of unknown eigenvalues with a quantum algorithm
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2013, 56 (04) : 426 - 426
  • [49] Universal quantum computation via quantum controlled classical operations
    Horvat, Sebastian
    Gao, Xiaoqin
    Dakic, Borivoje
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (07)
  • [50] Solving Lyapunov equation by quantum algorithm
    Sun H.
    Zhang J.
    Zhang, Jing (jing-zhang@mail.tsinghua.edu.cn), 1600, South China University of Technology (15): : 267 - 273