Efficient quantum algorithm for solving structured problems via multistep quantum computation

被引:1
|
作者
Wang, Hefeng [1 ,2 ,3 ]
Yu, Sixia [4 ,5 ]
Xiang, Hua [6 ,7 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Nonequilibrium Synth & Modulat Condens, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Phys, Xian 710049, Peoples R China
[3] Shaanxi Prov Key Lab Quantum Informat & Quantum Op, Xian 710049, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[6] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[7] Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
关键词
Algorithm for solving - Computation process - Multisteps - No-cloning theorem - Quantum algorithms - Quantum state - Resonant transition - Reuse - Search problem - Structured problems;
D O I
10.1103/PhysRevResearch.5.L012004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In classical computation, a problem can be solved in multiple steps where the calculated results of each step can be copied and used repeatedly. However, in quantum computation, it is difficult to realize a similar multistep computation process because the no-cloning theorem forbids making copies of an unknown quantum state perfectly. We find a method based on a quantum resonant transition to protect and reuse an unknown quantum state that encodes the calculated results of an intermediate step without copying it, and present a quantum algorithm that solves a problem via multistep quantum computation. We demonstrate that this algorithm can solve a type of structured search problems efficiently.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Quantum optimization algorithm based on multistep quantum computation
    Wang, Hefeng
    Xiang, Hua
    NEW JOURNAL OF PHYSICS, 2024, 26 (07):
  • [2] Quantum computation in algebraic number theory: Hallgren's efficient quantum algorithm for solving Pell's equation
    Jozsa, R
    ANNALS OF PHYSICS, 2003, 306 (02) : 241 - 279
  • [3] An Efficient Evolutionary Algorithm for Solving Incrementally Structured Problems
    Ansel, Jason
    Pacula, Maciej
    Amarasinghe, Saman
    O'Reilly, Una-May
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1699 - 1706
  • [4] Adiabatic quantum search algorithm for structured problems
    Roland, J
    Cerf, NJ
    PHYSICAL REVIEW A, 2003, 68 (06)
  • [5] Efficient algorithm for multiqudit twirling for ensemble quantum computation
    Toth, Geza
    Garcia-Ripoll, Juan Jose
    PHYSICAL REVIEW A, 2007, 75 (04):
  • [6] Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer
    Zhu, Linghua
    Tang, Ho Lun
    Barron, George S.
    Calderon-Vargas, F. A.
    Mayhall, Nicholas J.
    Barnes, Edwin
    Economou, Sophia E.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [7] Numerical multistep methods for the efficient solution of quantum mechanics and related problems
    Anastassi, Z. A.
    Simos, T. E.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 482 : 1 - 240
  • [8] Algorithm for solving unconstrained unitary quantum brachistochrone problems
    Campaioli, Francesco
    Sloan, William
    Modi, Kavan
    Pollock, Felix A.
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [9] Estimating the number of states of a quantum system via the rodeo algorithm for quantum computation
    Rocha, J. C. S.
    Gomes, R. F. I.
    Nogueira, W. A. T.
    Dias, R. A.
    QUANTUM INFORMATION PROCESSING, 2024, 23 (10)
  • [10] Efficient Quantum Algorithm for NPC and EXPTIME Problems
    Iriyama, S.
    Ohya, M.
    ADVANCES IN QUANTUM THEORY, 2011, 1327 : 373 - 379