Machine learning for interpreting coherent X-ray speckle patterns

被引:0
|
作者
Shen, Mingren [1 ]
Sheyfer, Dina [2 ]
Loeffler, Troy David [3 ]
Stephenson, G. Brian [4 ]
Sankaranarayanan, Subramanian K. R. S. [3 ,5 ]
Chan, Maria K. Y. [3 ]
Morgan, Dane [1 ]
机构
[1] Univ Wisconsin Madison, Dept Mat Sci & Engn, Madison, WI 53706 USA
[2] Argonne Natl Lab, X Ray Sci Div, Lemont, IL 60439 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[4] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[5] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
关键词
Deep neural networks - Learning systems;
D O I
10.1016/j.commatsci.2023.112500
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Speckle patterns produced by coherent X-ray have a close relationship with the internal structure of materials but quantitative inversion of the relationship to determine structure from speckle patterns is challenging. Here, we investigate the link between coherent X-ray speckle patterns and sample structures using a model 2D disk system and explore the ability of machine learning to learn aspects of the relationship. Specifically, we train a deep neural network to classify the coherent Xray speckle patterns according to the disk number density in the corresponding structure. It is demonstrated that the classification system is accurate for both non disperse and disperse size distributions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Machine learning applications in macromolecular X-ray crystallography
    Vollmar, Melanie
    Evans, Gwyndaf
    CRYSTALLOGRAPHY REVIEWS, 2021, 27 (02) : 54 - 101
  • [22] INTERPRETING X-RAY SCATTERING.
    Cohen, Jerome B.
    Schlosberg, William H.
    1978, 20 (11): : 105 - 110
  • [23] INTERPRETING THE SPINAL X-RAY - 2
    BUTT, WP
    BRITISH JOURNAL OF HOSPITAL MEDICINE, 1988, 40 (02): : 124 - 126
  • [24] Contrast enhancement of speckle patterns from blood in synchrotron X-ray imaging
    Kim, Guk Bae
    Lee, Sang Joon
    JOURNAL OF BIOMECHANICS, 2009, 42 (04) : 449 - 454
  • [25] Machine learning for ultrafast X-ray diffraction patterns on large-scale GPU clusters
    Ekeberg, Tomas
    Engblom, Stefan
    Liu, Jing
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2015, 29 (02): : 233 - 243
  • [26] X-ray Diffraction from X-ray Waveguide Arrays for Generation of Coherent X-ray
    Park, Yong-Sung
    Choi, Jaeho
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2010, 14 (04) : 333 - 336
  • [27] Methods of interpreting X-ray diffraction patterns of amorphous metallic materials (review)
    Il'inskii, A.G.
    Mikhailova, L.E.
    Romanova, A.V.
    Industrial laboratory, 1988, : 376 - 387
  • [28] Interpreting x-ray absorption spectra of vanadyl phthalocyanines spin qubit candidates using a machine learning assisted approach
    Lee, J. H.
    Urdaniz, C.
    Reale, S.
    Noh, K. J.
    Krylov, D.
    Doll, A.
    Colazzo, L.
    Bae, Y. J.
    Wolf, C.
    Donati, F.
    PHYSICAL REVIEW B, 2024, 109 (23)
  • [29] Coherent X-ray scattering and speckle pattern of solid-supported multilayers of surfactant bilayers
    Brotons, G
    Constantin, D
    Madsen, A
    Salditt, T
    PHYSICA B-CONDENSED MATTER, 2005, 357 (1-2) : 61 - 65
  • [30] Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis
    Sikorski, Marcin
    Song, Sanghoon
    Schropp, Andreas
    Seiboth, Frank
    Feng, Yiping
    Alonso-Mori, Roberto
    Chollet, Matthieu
    Lemke, Henrik T.
    Sokaras, Dimosthenis
    Weng, Tsu-Chien
    Zhang, Wenkai
    Robert, Aymeric
    Zhu, Diling
    JOURNAL OF SYNCHROTRON RADIATION, 2015, 22 : 599 - 605