Assessment of Oxidative Stress by Detection of H2O2 in Rye Samples Using a CuO- and Co3O4-Nanostructure-Based Electrochemical Sensor

被引:6
|
作者
Mihailova, Irena [1 ]
Krasovska, Marina [1 ]
Sledevskis, Eriks [1 ]
Gerbreders, Vjaceslavs [1 ]
Mizers, Valdis [1 ]
Ogurcovs, Andrejs [1 ,2 ]
机构
[1] Daugavpils Univ, Inst Life Sci & Technol, Dept Technol, G Liberts Innovat Microscopy Ctr, Parades St 1a, LV-5401 Daugavpils, Latvia
[2] Univ Latvia, Inst Solid State Phys, Kengaraga St 8, LV-1063 Riga, Latvia
关键词
salt stress; oxidative stress; rye; electrochemical sensor; hydrogen peroxide; cobalt oxide nanostructures; copper oxide nanostructures; HYDROGEN-PEROXIDE; L; SYSTEM; OXYGEN; WATER;
D O I
10.3390/chemosensors11100532
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Hydrogen peroxide is essential for biological processes and normally occurs in low concentrations in living organisms. However, exposure of plants to biotic and abiotic stressors can disrupt their defense mechanisms, resulting in oxidative stress with elevated H2O2 levels. This oxidative stress can damage cell membranes, impair photosynthesis, and hinder crucial plant functions. The primary focus of this article is to investigate the effects of salt and herbicide stress factors on the growth of rye samples. For precise quantification of the released H2O2 concentration caused by these stress factors, a non-enzymatic electrochemical sensor was developed, employing nanostructured CuO and Co3O4 oxides. Nanostructured electrodes exhibit high sensitivity and selectivity towards H2O2, making them suitable for detecting H2O2 in real samples with complex compositions. Rye samples exposed to NaCl- and glyphosate-induced stress demonstrated notable concentrations of released H2O2, displaying an increase of up to 30% compared to the control sample. Moreover, optical absorption measurements revealed a substantial decrease in chlorophyll concentration (up to 35% compared to the control group) in rye samples where elevated H2O2 levels were detected through electrochemical methods. These findings provide further evidence of the harmful effects of elevated H2O2 concentrations on plant vital functions.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Non-Enzymatic CO3O4 Nanostructure-Based Electrochemical Sensor for H2O2 Detection
    Mizers, V.
    Gerbreders, V.
    Krasovska, M.
    Sledevskis, E.
    Mihailova, I.
    Ogurcovs, A.
    Bulanovs, A.
    Gerbreders, A.
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2023, 60 (06) : 63 - 84
  • [2] THP as a sensor for the electrochemical detection of H2O2
    Failla, Mariacristina
    Ferlazzo, Angelo
    Abbate, Vincenzo
    Neri, Giovanni
    Saccullo, Erika
    Gulino, Antonino
    Rescifina, Antonio
    Patamia, Vincenzo
    Floresta, Giuseppe
    BIOORGANIC CHEMISTRY, 2024, 152
  • [3] Low Cost Detection of H2O2 in Blood for Oxidative Stress Monitoring Using Anodized CuO Nanostructures
    Niharika, M. P.
    Rao, B. Manmadha
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (03)
  • [4] Co3O4 Nanostructured Sensor for Electrochemical Detection of H2O2 as a Stress Biomarker in Barley: Fe3O4 Nanoparticles-Mediated Enhancement of Salt Stress Tolerance
    Gerbreders, Vjaceslavs
    Krasovska, Marina
    Sledevskis, Eriks
    Mihailova, Irena
    Mizers, Valdis
    MICROMACHINES, 2024, 15 (03)
  • [5] A novel electrochemical sensor based on CuO-CeO2/MXene nanocomposite for quantitative and continuous detection of H2O2
    Zhou, Kaiwei
    Li, Yang
    Zhuang, Shujuan
    Ren, Jie
    Tang, Feng
    Mu, Jinglin
    Wang, Ping
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 921
  • [6] A colorimetric sensor of H2O2 based on Co3O4-montmorillonite nanocomposites with peroxidase activity
    Zhu, Xixi
    Chen, Wei
    Wu, Kaili
    Li, Hongyu
    Fu, Min
    Liu, Qingyun
    Zhang, Xiao
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (02) : 1501 - 1509
  • [7] Graphene based nanocomposites for electrochemical detection of H2o2
    Yuvashree, S.
    Balavijayalakshmi, J.
    MATERIALS TODAY-PROCEEDINGS, 2019, 18 : 1740 - 1745
  • [8] An electrochemical sensor based on multiferroic NdFeO3 particles modified electrode for the detection of H2O2
    Rajaitha, P. Mary
    Hajra, Sugato
    Padhan, Aneeta Manjari
    Panda, Swati
    Sahu, Manisha
    Kim, Hoe Joon
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 915
  • [9] Role of glutaredoxin in metabolic oxidative stress -: Glutaredoxin as a sensor of oxidative stress mediated by H2O2
    Song, JJ
    Rhee, JG
    Suntharalingam, M
    Walsh, SA
    Spitz, DR
    Lee, YJ
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (48) : 46566 - 46575
  • [10] Enhancing Salt Stress Tolerance in Rye with ZnO Nanoparticles: Detecting H2O2 as a Stress Biomarker by Nanostructured NiO Electrochemical Sensor
    Gerbreders, Vjaceslavs
    Krasovska, Marina
    Sledevskis, Eriks
    Mihailova, Irena
    Mizers, Valdis
    Keviss, Jans
    Bulanovs, Andrejs
    CRYSTALS, 2024, 14 (05)