Federated unsupervised representation learning

被引:8
|
作者
Zhang, Fengda [1 ]
Kuang, Kun [1 ]
Chen, Long [1 ]
You, Zhaoyang [1 ]
Shen, Tao [1 ]
Xiao, Jun [1 ]
Zhang, Yin [1 ]
Wu, Chao [2 ]
Wu, Fei [1 ]
Zhuang, Yueting [1 ]
Li, Xiaolin [3 ,4 ,5 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Publ Affairs, Hangzhou 310027, Peoples R China
[3] Tongdun Technol, Hangzhou 310000, Peoples R China
[4] Chinese Acad Sci, Inst Basic Med & Canc, Hangzhou 310018, Peoples R China
[5] Elast Mind AI Technol Inc, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金; 浙江省自然科学基金;
关键词
Federated learning; Unsupervised learning; Representation learning; Contrastive learning; TP183; ARTIFICIAL-INTELLIGENCE; ALGORITHM; KNOWLEDGE; BIG;
D O I
10.1631/FITEE.2200268
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To leverage the enormous amount of unlabeled data on distributed edge devices, we formulate a new problem in federated learning called federated unsupervised representation learning (FURL) to learn a common representation model without supervision while preserving data privacy. FURL poses two new challenges: (1) data distribution shift (non-independent and identically distributed, non-IID) among clients would make local models focus on different categories, leading to the inconsistency of representation spaces; (2) without unified information among the clients in FURL, the representations across clients would be misaligned. To address these challenges, we propose the federated contrastive averaging with dictionary and alignment (FedCA) algorithm. FedCA is composed of two key modules: a dictionary module to aggregate the representations of samples from each client which can be shared with all clients for consistency of representation space and an alignment module to align the representation of each client on a base model trained on public data. We adopt the contrastive approach for local model training. Through extensive experiments with three evaluation protocols in IID and non-IID settings, we demonstrate that FedCA outperforms all baselines with significant margins.
引用
收藏
页码:1181 / 1193
页数:13
相关论文
共 50 条
  • [21] Unsupervised State Representation Learning in Atari
    Anand, Ankesh
    Racah, Evan
    Ozair, Sherjil
    Bengio, Yoshua
    Cote, Marc-Alexandre
    Hjelm, R. Devon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [22] Unsupervised Representation Learning for Proteochemometric Modeling
    Kim, Paul T.
    Winter, Robin
    Clevert, Djork-Arne
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (23)
  • [23] Unsupervised Representation Learning for Gaze Estimation
    Yu, Yu
    Odobez, Jean-Marc
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 7312 - 7322
  • [24] Consensus Clustering With Unsupervised Representation Learning
    Regatti, Jayanth Reddy
    Deshmukh, Aniket Anand
    Manavoglu, Eren
    Dogan, Urun
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [25] Unsupervised Representation Learning for Smart Transportation
    Lebese, Thabang
    Mattrand, Cecile
    Clair, David
    Bourinet, Jean-Marc
    Deheeger, Francois
    ADVANCES IN INTELLIGENT DATA ANALYSIS XXII, PT II, IDA 2024, 2024, 14642 : 15 - 27
  • [26] Unsupervised Representation Learning by Invariance Propagation
    Wang, Feng
    Liu, Huaping
    Guo, Di
    Sun, Fuchun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [27] Federated Discriminative Representation Learning for Image Classification
    Zhang, Yupei
    Wang, Yifei
    Li, Yuxin
    Xu, Yunan
    Wei, Shuangshuang
    Liu, Shuhui
    Shang, Xuequn
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 14
  • [28] Hierarchical Extreme Learning Machine for Unsupervised Representation Learning
    Zhu, Wentao
    Miao, Jun
    Qing, Laiyun
    Huang, Guang-Bin
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [29] Personalized Federated Learning via Deviation Tracking Representation Learning
    Jang, Jaewon
    Choi, Bong Jun
    38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024, 2024, : 762 - 766
  • [30] Federated Learning in Healthcare with Unsupervised and Semi-Supervised Methods
    Panos-Basterra, Juan
    Dolores Ruiz, M.
    Martin-Bautista, Maria J.
    FLEXIBLE QUERY ANSWERING SYSTEMS, FQAS 2023, 2023, 14113 : 182 - 193