Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review

被引:18
|
作者
Strielkowski, Wadim [1 ]
Vlasov, Andrey [2 ]
Selivanov, Kirill [2 ]
Muraviev, Konstantin [2 ]
Shakhnov, Vadim [2 ]
机构
[1] Czech Univ Life Sci Prague, Fac Econ & Management, Dept Trade & Finance, Kamycka 129, Prague 16500, Czech Republic
[2] Bauman Moscow State Tech Univ, Dept Design & Technol Elect Devices, 2-aj Baumanskaj Str 5-1, Moscow 105005, Russia
关键词
machine learning; power systems; smart grids; renewable energy; internet of energy; DEMAND-SIDE MANAGEMENT; OF-THE-ART; RENEWABLE ENERGY; ARTIFICIAL-INTELLIGENCE; BIG DATA; DATA ANALYTICS; SMART METERS; FUTURE; INTERNET; LOAD;
D O I
10.3390/en16104025
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The use of machine learning and data-driven methods for predictive analysis of power systems offers the potential to accurately predict and manage the behavior of these systems by utilizing large volumes of data generated from various sources. These methods have gained significant attention in recent years due to their ability to handle large amounts of data and to make accurate predictions. The importance of these methods gained particular momentum with the recent transformation that the traditional power system underwent as they are morphing into the smart power grids of the future. The transition towards the smart grids that embed the high-renewables electricity systems is challenging, as the generation of electricity from renewable sources is intermittent and fluctuates with weather conditions. This transition is facilitated by the Internet of Energy (IoE) that refers to the integration of advanced digital technologies such as the Internet of Things (IoT), blockchain, and artificial intelligence (AI) into the electricity systems. It has been further enhanced by the digitalization caused by the COVID-19 pandemic that also affected the energy and power sector. Our review paper explores the prospects and challenges of using machine learning and data-driven methods in power systems and provides an overview of the ways in which the predictive analysis for constructing these systems can be applied in order to make them more efficient. The paper begins with the description of the power system and the role of the predictive analysis in power system operations. Next, the paper discusses the use of machine learning and data-driven methods for predictive analysis in power systems, including their benefits and limitations. In addition, the paper reviews the existing literature on this topic and highlights the various methods that have been used for predictive analysis of power systems. Furthermore, it identifies the challenges and opportunities associated with using these methods in power systems. The challenges of using these methods, such as data quality and availability, are also discussed. Finally, the review concludes with a discussion of recommendations for further research on the application of machine learning and data-driven methods for the predictive analysis in the future smart grid-driven power systems powered by the IoE.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] A Data-Driven Predictive Approach for Drug Delivery Using Machine Learning Techniques
    Li, YuanYuan
    Lenaghan, Scott C.
    Zhang, Mingjun
    PLOS ONE, 2012, 7 (02):
  • [32] A paradigm for data-driven predictive modeling using field inversion and machine learning
    Parish, Eric J.
    Duraisamy, Karthik
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 305 : 758 - 774
  • [33] Data-Driven Methods and Challenges for Intelligent Transportation Systems in Smart Cities
    Dabboussi A.H.
    Jammal M.
    IEEE Internet of Things Magazine, 2023, 6 (04): : 68 - 72
  • [34] Data-driven Iterative Learning for Model Predictive Control of Heating Systems
    Lautenschlager, Bjoern
    Lichtenberg, Gerwald
    IFAC PAPERSONLINE, 2016, 49 (13): : 175 - 180
  • [35] A Review of Methods for Data-Driven Irrigation in Modern Agricultural Systems
    Jenkins, Matthew
    Block, David E.
    AGRONOMY-BASEL, 2024, 14 (07):
  • [36] Machine Learning for the Development of Data-Driven Turbulence Closures in Coolant Systems
    Hammond, James
    Montomoli, Francesco
    Pietropaoli, Marco
    Sandberg, Richard D.
    Michelassi, Vittorio
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2022, 144 (08):
  • [37] Thermal load prediction of communal district heating systems by applying data-driven machine learning methods
    Sakkas, Nikolaos P. P.
    Abang, Roger
    ENERGY REPORTS, 2022, 8 : 1883 - 1895
  • [38] A Bibliometric Review and Analysis of Data-Driven Fault Detection and Diagnosis Methods for Process Systems
    Alauddin, Md
    Khan, Faisal
    Imtiaz, Syed
    Ahmed, Salim
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (32) : 10719 - 10735
  • [39] DATA-DRIVEN SCIENCE AND ENGINEERING: MACHINE LEARNING, DYNAMICAL SYSTEMS, AND CONTROL
    Luchtenburg, Dirk M.
    IEEE CONTROL SYSTEMS MAGAZINE, 2021, 41 (04): : 95 - +
  • [40] Machine learning and data-driven fault detection for ship systems operations
    Cheliotis, Michail
    Lazakis, Iraklis
    Theotokatos, Gerasimos
    OCEAN ENGINEERING, 2020, 216